Abstract
In this paper, we introduce two notions of continuity for idempotent left semirings, which are called ∗-continuity and D-continuity. Also, for a ∗-continuous idempotent left semiring, we introduce a notion of ∗-ideals. Then, we show that the set of ∗-ideals of a ∗-continuous idempotent left semiring forms a D-continuous idempotent left semiring and the construction satisfies a universal property.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Conway, J.H.: Regular Algebra and Finite Machines. Chapman and Hall, Boca Raton (1971)
Furusawa, H., Nishizawa, K., Tsumagari, N.: Multirelational Models of Lazy, Monodic Tree, and Probabilistic Kleene Algebras. Bulletin of Informatics and Cybernetics (to appear)
Kozen, D.: On Kleene Algebras and Closed Semirings. In: Rovan, B. (ed.) MFCS 1990. LNCS, vol. 452, pp. 26–47. Springer, Heidelberg (1990)
Kozen, D.: A Completeness Theorem for Kleene Algebras and the Algebra of Regular Events. Information and Computation 110, 366–390 (1994)
McIver, A., Weber, T.: Towards Automated Proof Support for Probabilistic Distributed Systems. In: Sutcliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS (LNAI), vol. 3835, pp. 534–548. Springer, Heidelberg (2005)
Möller, B.: Lazy Kleene Algebra. In: Kozen, D. (ed.) MPC 2004. LNCS, vol. 3125, pp. 252–273. Springer, Heidelberg (2004)
Nishizawa, K., Tsumagari, N., Furusawa, H.: The cube of Kleene algebras and the triangular prism of multirelations. In: Berghammer, R., Jaoua, A., Möller, B. (eds.) RelMiCS/AKA 2009. LNCS, vol. 5827, Springer, Heidelberg (2009)
Takai, T., Furusawa, H.: Monodic Tree Kleene Algebra. In: Schmidt, R.A. (ed.) RelMiCS/AKA 2006. LNCS, vol. 4136, pp. 402–416. Springer, Heidelberg (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Furusawa, H., Sanda, F. (2009). ∗-Continuous Idempotent Left Semirings and Their Ideal Completion. In: Berghammer, R., Jaoua, A.M., Möller, B. (eds) Relations and Kleene Algebra in Computer Science. RelMiCS 2009. Lecture Notes in Computer Science, vol 5827. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04639-1_9
Download citation
DOI: https://doi.org/10.1007/978-3-642-04639-1_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-04638-4
Online ISBN: 978-3-642-04639-1
eBook Packages: Computer ScienceComputer Science (R0)