Skip to main content

∗-Continuous Idempotent Left Semirings and Their Ideal Completion

  • Conference paper
Relations and Kleene Algebra in Computer Science (RelMiCS 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5827))

Included in the following conference series:

  • 459 Accesses

Abstract

In this paper, we introduce two notions of continuity for idempotent left semirings, which are called ∗-continuity and D-continuity. Also, for a ∗-continuous idempotent left semiring, we introduce a notion of ∗-ideals. Then, we show that the set of ∗-ideals of a ∗-continuous idempotent left semiring forms a D-continuous idempotent left semiring and the construction satisfies a universal property.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Conway, J.H.: Regular Algebra and Finite Machines. Chapman and Hall, Boca Raton (1971)

    MATH  Google Scholar 

  2. Furusawa, H., Nishizawa, K., Tsumagari, N.: Multirelational Models of Lazy, Monodic Tree, and Probabilistic Kleene Algebras. Bulletin of Informatics and Cybernetics (to appear)

    Google Scholar 

  3. Kozen, D.: On Kleene Algebras and Closed Semirings. In: Rovan, B. (ed.) MFCS 1990. LNCS, vol. 452, pp. 26–47. Springer, Heidelberg (1990)

    Chapter  Google Scholar 

  4. Kozen, D.: A Completeness Theorem for Kleene Algebras and the Algebra of Regular Events. Information and Computation 110, 366–390 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  5. McIver, A., Weber, T.: Towards Automated Proof Support for Probabilistic Distributed Systems. In: Sutcliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS (LNAI), vol. 3835, pp. 534–548. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  6. Möller, B.: Lazy Kleene Algebra. In: Kozen, D. (ed.) MPC 2004. LNCS, vol. 3125, pp. 252–273. Springer, Heidelberg (2004)

    Google Scholar 

  7. Nishizawa, K., Tsumagari, N., Furusawa, H.: The cube of Kleene algebras and the triangular prism of multirelations. In: Berghammer, R., Jaoua, A., Möller, B. (eds.) RelMiCS/AKA 2009. LNCS, vol. 5827, Springer, Heidelberg (2009)

    Google Scholar 

  8. Takai, T., Furusawa, H.: Monodic Tree Kleene Algebra. In: Schmidt, R.A. (ed.) RelMiCS/AKA 2006. LNCS, vol. 4136, pp. 402–416. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Furusawa, H., Sanda, F. (2009). ∗-Continuous Idempotent Left Semirings and Their Ideal Completion. In: Berghammer, R., Jaoua, A.M., Möller, B. (eds) Relations and Kleene Algebra in Computer Science. RelMiCS 2009. Lecture Notes in Computer Science, vol 5827. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04639-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04639-1_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04638-4

  • Online ISBN: 978-3-642-04639-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics