Skip to main content

Fragmentation in a Novel Implementation of Slotted GPON Segmentation and Reassembly

  • Conference paper
AccessNets (AccessNets 2008)

Abstract

Gigabit passive optical network (GPON) is likely to play an important role in future access networks and the current challenge is to increase the existing GPON bit-rate to 10 Gb/s to provide next generation access (NGA). However, implementing this in a cost-effective manner is difficult and an important research topic. One of the difficulties in implementation for the electronic part of high-speed GPON is the fragmentation feature as it requires multiple pipeline paths. This paper proposes a novel segmentation and reassembly (SAR) scheme, which simplifies the implementation of fragmentation in that it employs fewer FPGA resources and allows a faster hardware clock rate. Analysis confirms that the scheme does not suffer from reduced efficiency in a variety of conditions. It is also backward compatible and suitable for current 1.25 Gb/s and 2.5 Gb/s GPONs. The novel SAR is verified by both a hardware GPON emulator and a software OPNET simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Nesset, D., Davey, R., Shea, D., Kirkpatrick, P., Shang, S., Lobel, M., Christensen, B.: 10 Gbit/s bidirectional transmission in 1024-way split, 110 km reach, PON system using commercial transceiver modules, super FEC and EDC. In: ECOC 2005, September 2005, pp. 25–29 (2005)

    Google Scholar 

  2. Kimura, S., Nogawa, M., Nishimura, K., Yoshida, T., Kumozaki, K., Nishihara, S., Ohtomo, Y.: A 10Gb/s CMOS-Burst-Mode Clock and Data Recovery IC for a WDM/TDM-PON Access Network. Tech. Rep. (November 2004)

    Google Scholar 

  3. Lam, M.: Software pipelining: An effective scheduling technique for VLIW machines. In: Proceedings of ACM SIGPLAN Conference on Programming Language Design and Implementation, pp. 318–328 (1988)

    Google Scholar 

  4. I.-T. Recommendation, G.984.3: Transmission convergence layer specification, 2006, with amendment (2006)

    Google Scholar 

  5. Heffes, H., Lucantoni, D.: A Markov Modulated Characterization of Packetized Voice and Data Traffic and Related Statistical Multiplexer Performance. IEEE Journal on Selected Areas in Communications 4(6), 856–868 (1986)

    Article  Google Scholar 

  6. Leland, W.E., Taqqu, M.S., Willinger, W., Wilson, D.V.: On the self-similar nature of Ethernet traffic (extended version). IEEE/ACM Trans. Netw. 2(1), 1–15 (1994)

    Article  Google Scholar 

  7. Cao, J., Cleveland, W., Lin, D., Sun, D.: Internet traffic tends toward Poisson and independent as the load increases. Nonlinear Estimation and Classification (2002)

    Google Scholar 

  8. Four million-packet traces of LAN and WAN traffic seen on an Ethernet. The Internet Traffic Archieve sited at the Lawrence Berkeley National Laboratory, http://ita.ee.lbl.gov/html/contrib/BC.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Qin, Y., Reed, M., Lu, Z., Hunter, D., Rafel, A., Kang, J. (2009). Fragmentation in a Novel Implementation of Slotted GPON Segmentation and Reassembly. In: Wang, C. (eds) AccessNets. AccessNets 2008. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04648-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04648-3_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04647-6

  • Online ISBN: 978-3-642-04648-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics