Skip to main content

Optical CDMA with Embedded Spectral-Polarization Coding over Double Balanced Differential-Detector

  • Conference paper
AccessNets (AccessNets 2008)

Abstract

A spectral-polarization coding (SPC) optical code-division multiple-access (OCDMA) configuration structured over arrayed-waveguide grating (AWG) router is proposed. The polarization-division double balanced detector is adopted to execute difference detection and enhances system performance. The signal-to-noise ratio (SNR) is derived by taking the effect of PIIN into account. The result indicates that there would be up to 9-dB SNR improvement than the conventional spectral-amplitude coding (SAC) structures with Walsh-Hadamard codes. Mathematical deriving results of the SNR demonstrate the system embedded with the orthogonal state of polarization (SOP) will suppress effectively phase-induced intensity noise (PIIN). In addition, we will analyze the relations about bit error rate (BER) vs. the number of active users under the different encoding schemes and compare them with our proposed scheme. The BER vs. the effective power under the different encoding scheme with the same number of simultaneous active user conditions are also revealed. Finally, the polarization-matched factor and the difference between simulated and experimental values are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Salehi, J.A.: Code division multiple-access techniques in optical fiber network-Part I: Fundamental principles. IEEE Trans. Commun. 37, 824–833 (1989)

    Article  Google Scholar 

  2. Salehi, J.A., Brackett, C.A.: Code division multiple-access Techniques in optical fiber networks-Part II: Systems performance analysis. IEEE Trans. Commun. 37, 834–842 (1989)

    Article  Google Scholar 

  3. Wei, Z., Shalaby, H.M.H., Ghafouri-Shiraz, H.: Modified quadratic congruence codes for fiber bragg-grating-based spectral-amplitude-coding optical CDMA systems. J. Lightwave Technol. 19, 1274–1281 (2001)

    Article  Google Scholar 

  4. Zhou, X., Shalaby, H.M.H., Lu, C., Cheng, T.: Code for spectral amplitude coding optical CDMA systems. Electron. Lett. 36, 728–729 (2000)

    Article  Google Scholar 

  5. Huang, J.F., Yang, C.C.: Reductions of multiple-access interference in fiber-grating-based optical CDMA network. IEEE Trans. Commun. 50, 1680–1687 (2002)

    Article  Google Scholar 

  6. Moslehi, B.: Noise power spectra of optical two-beam interferometers induced by the laser phase noise. J. Lightwave Technol. 4, 1704–1710 (1986)

    Article  Google Scholar 

  7. Smith, E.D.J., Baikie, R.J., Taylor, D.P.: Performance enhancement of spectral-amplitude-coding optical CDMA using pulseposition modulation. IEEE Trans. Commun. 46, 1176–1185 (1998)

    Article  Google Scholar 

  8. Smith, E.D.J., Gough, P.T., Taylor, D.P.: Noise limits of optical spectral-encoding CDMA systems. Electron. Lett. 31, 1469–1470 (1995)

    Article  Google Scholar 

  9. Huang, J.F., Yang, C.C., Tseng, S.P.: Complementary Walsh-Hadamard coded optical CDMA coder/decoders structured over arrayed-waveguide grating routers. Optics Commun. 229, 241–248 (2004)

    Article  Google Scholar 

  10. Chang, Y.T., Huang, J.F.: Complementary bipolar spectral polarization coding over fiber-grating-based differential photodetectors. Optical Engineering 45, 045004 (2006)

    Google Scholar 

  11. Hu, H.W., Chen, H.T., Yang, G.C., Kwong, W.C.: Synchronous walsh-based bipolar-bipolar code for CDMA passive optical networks. J. Lightwave Technol. 25, 1910–1917 (2007)

    Article  Google Scholar 

  12. Sekine, K., Sasaki, S., Kikuchi, N.: 10 Gbit/s four-channel wavelength- and polarisation-division multiplexing transmission over 340 km with 0.5 nm channel spacing. Electron. Lett. 31, 49–50 (1995)

    Article  Google Scholar 

  13. Sotobayashi, H., Chujo, W., Kitayama, K.: 1.6-b/s/Hz 6.4-Tb/s QPSK-OCDM/WDM (4 OCDM × 40 WDM × 40 Gb/s) transmission experiment using optical hard thresholding. IEEE Photon. Technol. Lett. 14, 555–557 (2002)

    Article  Google Scholar 

  14. Tsalamanis, I., Rochat, E., Walker, S., Parker, M., Holburn, D.: Experimental demonstration of cascaded AWG access network featuring bi-directional transmission and polarization multiplexing. Opt. Express 12, 764–769 (2004)

    Article  Google Scholar 

  15. Chraplyvy, A.R., Gnauck, A.H., Tkach, R.W., Zyskind, J.L., Sulhoff, J.W., Lucero, A.J., Sun, Y., Jopson, R.M., Forghieri, F., Derosier, R.M., Wolf, C., McConnick, A.R.: 1-Tb/s Transmission Experiment. IEEE Photonics Technol. Lett. 13, 1370–1372 (2001)

    Article  Google Scholar 

  16. Poole, C.D., Wagner, R.E.: Phenomenological approach to polarization dispersion in long single-mode fibres. Electron. Lett. 22, 1029–1030 (1986)

    Article  Google Scholar 

  17. Khosravni, R., Havstad, S.A., Song, Y.W., Ebrahimi, P., Willner, A.E.: Polarization-mode dispersion compensation in WDM systems. IEEE Photonics Technol. Lett. 13, 1370–1372 (2001)

    Article  Google Scholar 

  18. Willner, A.E., Motaghian Nezam, S.M.R., Yan, L., Pan, Z., Hauer, M.C.: Monitoring and control of polarization-related impairments in optical fiber systems. J. Lightwave Technol. 22, 106–125 (2004)

    Article  Google Scholar 

  19. Heismann, F., Hansen, P.B., Korotky, S.K., Raybon, G., Veselka, J.J., Whalen, M.S.: Automatic polarisation demultiplexer for polarisation-multiplexedtransmission systems. Electron. Lett. 29, 1965–1966 (1986)

    Article  Google Scholar 

  20. Chan, E.H.W., Minasian, R.A.: Suppression of phase-induced intensity noise in optical delay-line signal processors using a differential-detection technique. IEEE Trans. Microw. Theory Tech. 54, 873–879 (2006)

    Article  Google Scholar 

  21. Poole, C.D., Bergano, N.S., Wagner, R.E., Schulte, H.J.: Polarization dispersion and principal states in a 147-km undersea lightwave cable. J. Lightwave Technol. 6, 1185–1190 (1988)

    Article  Google Scholar 

  22. Huang, J.F., Chang, Y.T.: Improved phase noise performance using orthogonal ternary codes over spectral polarization and amplitude coding networks. Opt. Eng. 46, 015005 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Huang, JF., Yen, CT., Chen, BH. (2009). Optical CDMA with Embedded Spectral-Polarization Coding over Double Balanced Differential-Detector. In: Wang, C. (eds) AccessNets. AccessNets 2008. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04648-3_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04648-3_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04647-6

  • Online ISBN: 978-3-642-04648-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics