Abstract
A spectral-polarization coding (SPC) optical code-division multiple-access (OCDMA) configuration structured over arrayed-waveguide grating (AWG) router is proposed. The polarization-division double balanced detector is adopted to execute difference detection and enhances system performance. The signal-to-noise ratio (SNR) is derived by taking the effect of PIIN into account. The result indicates that there would be up to 9-dB SNR improvement than the conventional spectral-amplitude coding (SAC) structures with Walsh-Hadamard codes. Mathematical deriving results of the SNR demonstrate the system embedded with the orthogonal state of polarization (SOP) will suppress effectively phase-induced intensity noise (PIIN). In addition, we will analyze the relations about bit error rate (BER) vs. the number of active users under the different encoding schemes and compare them with our proposed scheme. The BER vs. the effective power under the different encoding scheme with the same number of simultaneous active user conditions are also revealed. Finally, the polarization-matched factor and the difference between simulated and experimental values are discussed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Salehi, J.A.: Code division multiple-access techniques in optical fiber network-Part I: Fundamental principles. IEEE Trans. Commun. 37, 824–833 (1989)
Salehi, J.A., Brackett, C.A.: Code division multiple-access Techniques in optical fiber networks-Part II: Systems performance analysis. IEEE Trans. Commun. 37, 834–842 (1989)
Wei, Z., Shalaby, H.M.H., Ghafouri-Shiraz, H.: Modified quadratic congruence codes for fiber bragg-grating-based spectral-amplitude-coding optical CDMA systems. J. Lightwave Technol. 19, 1274–1281 (2001)
Zhou, X., Shalaby, H.M.H., Lu, C., Cheng, T.: Code for spectral amplitude coding optical CDMA systems. Electron. Lett. 36, 728–729 (2000)
Huang, J.F., Yang, C.C.: Reductions of multiple-access interference in fiber-grating-based optical CDMA network. IEEE Trans. Commun. 50, 1680–1687 (2002)
Moslehi, B.: Noise power spectra of optical two-beam interferometers induced by the laser phase noise. J. Lightwave Technol. 4, 1704–1710 (1986)
Smith, E.D.J., Baikie, R.J., Taylor, D.P.: Performance enhancement of spectral-amplitude-coding optical CDMA using pulseposition modulation. IEEE Trans. Commun. 46, 1176–1185 (1998)
Smith, E.D.J., Gough, P.T., Taylor, D.P.: Noise limits of optical spectral-encoding CDMA systems. Electron. Lett. 31, 1469–1470 (1995)
Huang, J.F., Yang, C.C., Tseng, S.P.: Complementary Walsh-Hadamard coded optical CDMA coder/decoders structured over arrayed-waveguide grating routers. Optics Commun. 229, 241–248 (2004)
Chang, Y.T., Huang, J.F.: Complementary bipolar spectral polarization coding over fiber-grating-based differential photodetectors. Optical Engineering 45, 045004 (2006)
Hu, H.W., Chen, H.T., Yang, G.C., Kwong, W.C.: Synchronous walsh-based bipolar-bipolar code for CDMA passive optical networks. J. Lightwave Technol. 25, 1910–1917 (2007)
Sekine, K., Sasaki, S., Kikuchi, N.: 10 Gbit/s four-channel wavelength- and polarisation-division multiplexing transmission over 340 km with 0.5 nm channel spacing. Electron. Lett. 31, 49–50 (1995)
Sotobayashi, H., Chujo, W., Kitayama, K.: 1.6-b/s/Hz 6.4-Tb/s QPSK-OCDM/WDM (4 OCDM × 40 WDM × 40 Gb/s) transmission experiment using optical hard thresholding. IEEE Photon. Technol. Lett. 14, 555–557 (2002)
Tsalamanis, I., Rochat, E., Walker, S., Parker, M., Holburn, D.: Experimental demonstration of cascaded AWG access network featuring bi-directional transmission and polarization multiplexing. Opt. Express 12, 764–769 (2004)
Chraplyvy, A.R., Gnauck, A.H., Tkach, R.W., Zyskind, J.L., Sulhoff, J.W., Lucero, A.J., Sun, Y., Jopson, R.M., Forghieri, F., Derosier, R.M., Wolf, C., McConnick, A.R.: 1-Tb/s Transmission Experiment. IEEE Photonics Technol. Lett. 13, 1370–1372 (2001)
Poole, C.D., Wagner, R.E.: Phenomenological approach to polarization dispersion in long single-mode fibres. Electron. Lett. 22, 1029–1030 (1986)
Khosravni, R., Havstad, S.A., Song, Y.W., Ebrahimi, P., Willner, A.E.: Polarization-mode dispersion compensation in WDM systems. IEEE Photonics Technol. Lett. 13, 1370–1372 (2001)
Willner, A.E., Motaghian Nezam, S.M.R., Yan, L., Pan, Z., Hauer, M.C.: Monitoring and control of polarization-related impairments in optical fiber systems. J. Lightwave Technol. 22, 106–125 (2004)
Heismann, F., Hansen, P.B., Korotky, S.K., Raybon, G., Veselka, J.J., Whalen, M.S.: Automatic polarisation demultiplexer for polarisation-multiplexedtransmission systems. Electron. Lett. 29, 1965–1966 (1986)
Chan, E.H.W., Minasian, R.A.: Suppression of phase-induced intensity noise in optical delay-line signal processors using a differential-detection technique. IEEE Trans. Microw. Theory Tech. 54, 873–879 (2006)
Poole, C.D., Bergano, N.S., Wagner, R.E., Schulte, H.J.: Polarization dispersion and principal states in a 147-km undersea lightwave cable. J. Lightwave Technol. 6, 1185–1190 (1988)
Huang, J.F., Chang, Y.T.: Improved phase noise performance using orthogonal ternary codes over spectral polarization and amplitude coding networks. Opt. Eng. 46, 015005 (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering
About this paper
Cite this paper
Huang, JF., Yen, CT., Chen, BH. (2009). Optical CDMA with Embedded Spectral-Polarization Coding over Double Balanced Differential-Detector. In: Wang, C. (eds) AccessNets. AccessNets 2008. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04648-3_33
Download citation
DOI: https://doi.org/10.1007/978-3-642-04648-3_33
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-04647-6
Online ISBN: 978-3-642-04648-3
eBook Packages: Computer ScienceComputer Science (R0)