Skip to main content

Stable Structural Deformations

  • Conference paper
Computer Vision Systems (ICVS 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5815))

Included in the following conference series:

  • 1963 Accesses

Abstract

Recently, we introduced a hierarchical finite element model in the context of structural image segmentation. Such model deforms from its equilibrium shape into similar shapes under the influence of both, image–based forces and structural forces, which serve the propagation of deformations across the hierarchy levels. Such forces are very likely to result in large (rotational) deformations, which yield under the linear elasticity model artefacts and thus poor segmentation results. In this paper, we provide results indicating that different implementations of the stiffness warping method can be successfully combined to simulate dependent rotational deformations correctly, and in an efficient manner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Sclaroff, S., Pentland, A.: Modal matching for correspondence and recognition. IEEE Trans. Patt. Anal. Mach. Intell. 17(6), 545–561 (1995)

    Article  Google Scholar 

  2. Cootes, T., et al.: The use of active shape models for locating objects in medical images. Imag. Vis. Comp. 12(16), 355–366 (1994)

    Article  Google Scholar 

  3. Pentland, A.: Recognition by parts. In: Proc. IEEE ICCV, pp. 612–620 (1987)

    Google Scholar 

  4. Ullman, S., Basri, R.: Recognition by linear combinations of models. IEEE Trans. Patt. Anal. Mach. Intell. 13(10), 992–1005 (1991)

    Article  Google Scholar 

  5. Heap, A., Hogg, D.: Improving Specificity in PDMs using a Hierarchical Approach. In: Proc. BMVC, pp. 80–89 (1997)

    Google Scholar 

  6. Al-Zubi, S., Toennies, K.D.: Extending active shape models to incorporate a-priori knowledge about structural variability. In: Van Gool, L. (ed.) DAGM 2002. LNCS, vol. 2449, p. 338. Springer, Heidelberg (2002)

    Google Scholar 

  7. Felzenszwalb, P., Huttenlocher, D.: Pictorial structures for object recognition. Int. J. Comp. Vis. 61(1), 55–79 (2003)

    Article  Google Scholar 

  8. Ren, X., et al.: Recovering human body configurations using pairwise constraints between parts. In: Proc. IEEE ICCV, pp. 824–831 (2005)

    Google Scholar 

  9. Zhe, L., et al.: Hierarchical part–template matching for human detection and segmentation. In: Proc. IEEE ICCV, pp. 1–8 (2007)

    Google Scholar 

  10. Wang, Y., Mori, G.: Multiple tree models for occlusion and spatial constraints in human pose estimation. In: Proc. ECCV, pp. 710–724 (2008)

    Google Scholar 

  11. Felzenszwalb, P., et al.: A discriminatively trained, multiscale, deformable part model. In: Proc. IEEE CVPR, pp. 1–8 (2008)

    Google Scholar 

  12. Engel, K., et al.: A two–level dynamic model for the representation and recognition of cortical folding patterns. In: Proc. IEEE ICIP, pp. 297–300 (2005)

    Google Scholar 

  13. Zhu, L., Yuille, A.: A hierarchical compositional system for rapid object detection. In: Proc. NIPS (2005)

    Google Scholar 

  14. Pentland, A., Sclaroff, S.: Closed–form solutions to physically based shape modeling and recognition. IEEE Trans. Patt. Anal. Mach. Intell. 13(7), 715–729 (1991)

    Article  Google Scholar 

  15. Terzopoulos, D., et al.: Elastically deformable models. In: Proc. ACM SIGGRAPH, pp. 205–214 (1987)

    Google Scholar 

  16. Müller, M., et al.: Stable real–time deformations. In: Proc. ACM SIGGRAPH, pp. 49–54 (2002)

    Google Scholar 

  17. Kendall, D.: A survey of the statistical theory of shape. Stat. Sci. 4, 87–120 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  18. Tao, H., Huang, T.: Connected vibrations: a modal analysis approach to non-rigid motion tracking. In: Proc. IEEE CVPR, pp. 1424–1426 (1998)

    Google Scholar 

  19. Xu, C., Prince, J.: Snakes, shapes, and gradient vector flow. IEEE Trans. Imag. Proc. 7(3), 359–369 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  20. Huang, J., et al.: Geometrically based potential energy for simulating deformable objects. Vis. Comput. 22(9), 740–748 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Engel, K., Toennies, K. (2009). Stable Structural Deformations. In: Fritz, M., Schiele, B., Piater, J.H. (eds) Computer Vision Systems. ICVS 2009. Lecture Notes in Computer Science, vol 5815. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04667-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04667-4_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04666-7

  • Online ISBN: 978-3-642-04667-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics