
The LIME Interface Specification Language and
Runtime Monitoring Tool?

Kari Kähkönen, Jani Lampinen, Keijo Heljanko, and Ilkka Niemelä

Helsinki University of Technology TKK
Department of Information and Computer Science

P.O. Box 5400, FI-02015 TKK, Finland
ktkahkon@tcs.hut.fi, jani.lampinen@gmail.com,

{Keijo.Heljanko,Ilkka.Niemela}@tkk.fi

Abstract. This paper describes an interface specification language de-
signed in the LIME project (LIME ISL) and the supporting runtime mon-
itoring tool. The interface specification language is tailored for the Java
programming language and supports two kinds of specifications: (i) call
specifications that specify requirements for the allowed call sequences
to a Java object instance and (ii) return specifications that specify the
allowed behaviors of the Java object instance. Both the call and return
specifications can be expressed with Java annotations in several differ-
ent ways: as past time LTL formulas, as (safety) future LTL formulas,
as regular expressions, and as nondeterministic finite automata. We also
describe the supporting LIME interface monitoring tool which is an open
source implementation of runtime monitoring for the interface specifica-
tions implemented using AspectJ.

1 Introduction

The interface specification language (LIME ISL) developed in the LIME project
(http://lime.abo.fi/) is a lightweight formal method for defining behavioral
interfaces of Java objects. The approach is supported by an open source imple-
mentation of a runtime monitoring tool automatically generating AspectJ [1]
aspects to monitor that given interface specifications are not violated.

The aim of the LIME ISL is to enable a convenient way for the specifi-
cation of behavioral aspects of interfaces in a manner that can be efficiently
supported by tools. The aim is to extend the design by contract [2] approach
to software development supported by approaches such as the Java Modeling
Language (JML) [3] to behavioral aspects of interfaces. The idea is to divide
the component interface to two parts in an assume/guarantee fashion: (i) call
specifications (component environment assumptions) that specify requirements

? Work financially supported by Tekes - Finnish Funding Agency for Technology
and Innovation, Conformiq Software, Elektrobit, Nokia, Space Systems Finland,
Academy of Finland (projects 112016,126860,128050), and Technology Industries
of Finland Centennial Foundation.

for the allowed call sequences to a Java object instance and (ii) return specifica-
tions (component behavior guarantees) that specify the allowed behaviors of the
Java object instance. Both the call and return specifications can be expressed
as Java annotations in several different ways: as past time LTL formulas, as
(safety) future LTL formulas, as regular expressions, and as nondeterministic
finite automata.

Our work also draws motivation from runtime monitoring tools such as
MOP [4] and Java PathExplorer [5] as well as the tool of Stolz and Bodden [6] in
the tool implementation techniques. However, unlike general event based mon-
itoring approaches LIME interface specifications are more structured and the
approach can be seen as a more disciplined approach to specifying runtime mon-
itors for the software system of interest. For example, in our approach each
behavioral interface is divided into call specifications and return specifications
(assumptions/guarantees). Now a violation of a call specification is always a vi-
olation of the caller of the interface, while a violation of a return specification is
the fault of the called Java class instance. This approach also allows the closing
of open systems in testing by automatically generating test stub code directly
from the interface specifications.

We fully agree with the Jackson and Fekete [7] stating: “Formal descriptions
must be lightweight; this means that software developers should not have to
express everything about the system being developed, but can instead target
formal reasoning at those aspects of the system that are especially risky.” The
LIME ISL tries to achieve this goal by allowing partial specification of behavioral
interfaces unlike model based design approaches that usually require modelling
a large part of the design in order to be genuinely useful. This is achieved by
allowing partial and incremental descriptions of the interfaces that can be made
richer as needed.

Another source of inspiration for the design of the LIME ISL has been the
rise of standardized specification languages in the hardware design community
such as IEEE 1850 - Property Specification Language (PSL) [8]. One of the key
features of PSL is the inclusion of both temporal logic LTL as well as regular
expressions in the specification language provided for the user. This combination
of several specification methods provides a choice of a convenient notation for
specifying the different properties at hand. This is one of the reasons why LIME
ISL supports past time LTL formulas, (safety) future LTL formulas, regular
expressions, as well as nondeterministic finite automata. The inclusion of future
time LTL was also motivated by the need to directly reuse specifications from
model checking in the runtime monitoring context.

2 Interface Specifications

The core idea of the LIME interface specification language is to provide a declar-
ative mechanism for defining how different software components can interact
through interfaces in a manner that can be monitored at runtime. These inter-
actions can be specified in two ways: by call specifications (CS) which define

Fig. 1. The interaction model

how components should be used and by return specifications (RS) which define
how the components should respond. If a call specifications is violated, the call-
ing component can be determined to be incorrect and, respectively, if the called
component does not satisfy its return specifications, it is functioning incorrectly.
This interaction model between components is illustrated in Fig. 1.

To get an overview of the specification language, let us consider the following
example where LIME interface specifications are written for a simple log file
interface.

1: @CallSpecifications(

2: regexp = { "FileUsage ::= (open(); (read() | write())*; close())*" },

3: valuePropositions = { "validString ::= (#entry != null)" },

4: pltl = { "ProperData ::= G (write() -> validString)" }

5:)

6: @ReturnSpecifations(

7: valuePropositions = {

8: "okLength ::= #this.length() == #pre(#this.length()+#entry.length())"

9: },

10: pltl = { "ProperWrites ::= G (write() -> okLength)" }

11:)

12: public interface LogFile {

13: public void open();

14: public void close();

15: public String read();

16: public void write(String entry);

17: public long length();

18: }

In this example the call specifications describe the allowed call orders of the
interface methods and the valid input values to the write method. The return
specifications describe how the implementation of the LogFile should behave
when write method is called. Call specifications are similar in spirit to JML pre-
conditions, while return specifications are similar in spirit to JML postconditions.

The main difference is that LIME ISL allows also to specify temporal aspects of
an interface (behavior over several method calls) while JML concentrates on the
behavior of a single call.

In the LIME interface specification language, the specifications are written
as annotations to Java interfaces or classes. The two main annotations that can
be written are @CallSpecifications and @ReturnSpecifications. The anno-
tations for call and return specifications consists of a set of atomic propositions
and actual specifications. Atomic propositions are used to make claims about the
program execution and the state of the program. These atomic propositions are
subdivided into three classes: value propositions, call propositions and exception
propositions.

Value propositions are claims about the state of the program and the values
of arguments given to the observed methods. A value proposition can be seen as
a native language expression that should be free of side effects and that is true if
and only if the native language expression evaluates to true. In value propositions
there are several reserved words that give special semantics for the propositions.
Keyword #this allows referencing the instance of the annotated interface (see
line 8 of the example), while keyword #result allows referencing the return
value of a method. Keyword #pre[primitive type](Java expression) makes
it possible to reference an entry value in return specifications after the actual
method has been executed. This allows specifications that describe how some
value must change during execution of the observed method. Primitive type int
is the default type and therefore it is not necessary to explicitly write it as shown
in line 8 of the example specification. By writing #<argument>, it is possible to
reference the arguments given to an observed method (see line 3 of the example).

Call propositions are claims about method execution. A call proposition is
true if and only if the method named in the proposition is currently executing
(e.g., the body of open() is executing at the top of the call stack). Argument
overloading is not yet supported in the current version and therefore the call
propositions refer to all methods that have the same name regardless of their
argument types. In line 2 of the example, the methods named in the FileUsage
specification are call propositions.

Exception propositions are claims about thrown exceptions. Specifically, they
are propositions available in return specifications that are true if and only if the
observed method threw a specific exception (e.g., RuntimeException has been
thrown by a method).

The defined call and return specifications use these atomic propositions to
describe the expected properties of the interface components and they can be
written in three complementary ways: by using regular expressions, nondeter-
ministic finite automata (NFA) and a large supported subset of Linear Temporal
Logic with Past (PLTL).

In LIME ISL the user does not have to explicitly define when the specifi-
cations are observed but the observers see an execution trace of the program
where the observation points are implicitly defined by the call propositions that
are used in the observed specification. We will refer to these observations points

Fig. 2. An execution trace of the LogFile example

as events. There are two types of events that differ slightly from each other: call
events and return events.

Call events occur right before a call to a method that has been used as a call
proposition in the corresponding call specification. This means that the respec-
tive call specification is observed at this point of the execution trace. Return
events are similarly determined by the call propositions in the corresponding re-
turn specification. There is, however, a difference how these events are observed.
In order to allow the return specifications to contain value propositions that
use #pre to describe values at the entry point of the called method, the imple-
mentation uses a history variables technique to store the required values at the
entry point of a call. It then uses these history variables to monitor the return
specification at the return of the called method, where all value propositions are
evaluated and the monitored return event happens.

Figure 2 illustrates the concept of events in one possible execution trace of
a system that uses the LogFile interface. The filled circles in the picture are
call events and the empty circles are return events. The semantics is then that
the observers are fed their own linear event sequences and based on that event
sequence, the observer can detect failing specifications during system runtime.

3 The Runtime Monitoring Tool

The LIME Interface Monitoring Tool is our first software tool for the intro-
duced specification language. It allows monitoring the specifications at runtime
to determine if some component violates the given specifications. Multi-threaded
programs are not supported in the current version. An architectural overview of
the tool is given in Fig. 3.

The monitoring tool works by reading the specification annotations from the
Java source files. The specifications are then translated into deterministic finite
state automata that function as observers. These automata are translated into
runnable Java code and AspectJ (http://www.eclipse.org/aspectj/) is used
to weave the code into the original program that is being tested. This results in
an instrumented runtime environment where the observers are executed at the
timepoints discussed in the previous section.

Spoon [9], the dk.brics.automaton (http://www.brics.dk/automaton/) pack-
age and SCheck [10] are adopted as third-party software. Spoon is used for an-

Fig. 3. Architecture of the LIME interface monitoring tools

alyzing the program and the dk.brics.automaton package is used for internal
representation and manipulation of regular expression checkers. SCheck is used
for converting future time LTL subformulas into finite state automata. The ap-
proach of [11] using synthesized code with history variables is used for past time
subformulas, while for the future part the tool SCheck is used to encode informa-
tive bad prefixes [10] of future LTL formulas to minimal DFA. Our implementa-
tion currently allows the use of past-time subformulas LTL in future-time LTL
formulas but not vice versa. More implementation details for an early version of
the tool can be found from [12].

3.1 Closing Partially Implemented Systems

The call specifications can be used to automatically generate stub code that
closes an open system from above. In other words, it is possible to generate a
stub code implementation of the application part shown in Fig. 1. so that it uses
a component that we want to test. The stub code generates test sequences to
the component and the call specifications are used to filter out violating method
call sequences.

The LIME runtime monitoring tool supports this idea by providing a gen-
erator that creates such stub code implementations. The generated code selects
the methods to be called non-deterministically and generates random argument
values. The number of method calls is limited to a test depth that can be selected
by the user. To avoid reporting call specification violations that are caused by
the stub code, such violations are set to be identified as inconclusive test runs.

Purely random environment is likely to generate a large number test runs that
are inconclusive. For this reason the described approach is intended to be used
with a testing tool based on dynamic symbolic execution similar to jCUTE [13]
and Pex [14]. This prevents the generation of multiple instances of the same test
case and also allows us to generate test cases that are difficult to obtain by using

only random testing. The implementation of the test case generator is work in
progress.

As an example of the stub code generation, let us consider the LogFile inter-
face again. The class TestDriver shown below has been generated by the mon-
itoring tool and it consists of a simple loop (line 8) where one of the methods
in the LogFile interface is called. The ExceptionOverride class (line 7) is used
to set the call specification violations to be identified as inconclusive test runs.
The random values generated by the stub code can be replaced by input values
received from the test case generator when the test generator tool is used.

1: public class TestDriver {

2: public static void main(String[] args) {

3: Random r = new Random();

4: int testDepth = 0;

5: FileImpl obj = new FileImpl();

6: java.lang.String javalangString1;

7: ExceptionOverride.setCallException(obj,

InconclusiveException.class);

8: while (testDepth < 5) {

9: testDepth++;

10: int i = r.nextInt(5);

11: switch (i) {

12: case 0: obj.length(); break;

13: case 1: javalangString1 = RandomString.getString(r);

14: obj.write(javalangString1); break;

15: case 2: obj.read(); break;

16: case 3: obj.close(); break;

17: case 4: obj.open(); break;

18: }

19: }

20: }

21: }

4 Conclusion

We have described the LIME interface specification language and interface mon-
itoring tool, available from: http://www.tcs.hut.fi/~ktkahkon/LIMT/. There
are interesting topics for further work. The SCheck tool could be extended to
allow free mixing of future and past LTL subformulas. The implementation of a
test case generator that can be used with the automatically generated stub code
is currently work in progress. We are also investigating how the test case genera-
tion process can be guided to achieve good interface specification coverage with
a small number of test cases. Adding support for multi-threaded programs is one
important topic for future work. We are also working on porting the specification
language to the C programming language. Another more far reaching research
direction would be to investigate interface compatibility of different interfaces
along the lines of [15].

Acknowledgements We thank our LIME research partners at Åbo Akademi
University and colleagues at TKK for feedback on earlier versions of the LIME
interface specification language, and the anonymous referees of RV 2009 for valu-
able suggestions for improving the paper.

References

1. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.:
An overview of AspectJ. In Knudsen, J.L., ed.: ECOOP 2001 - Object-Oriented
Programming, 15th European Conference, Budapest, Hungary, June 18-22, 2001,
Proceedings. Volume 2072 of Lecture Notes in Computer Science., Springer (2001)
327–353

2. Meyer, B.: Applying ”design by contract”. IEEE Computer 25(10) (1992) 40–51
3. Burdy, L., Cheon, Y., Cok, D., Ernst, M.D., Kiniry, J., Leavens, G.T., Leino,

K.R.M., Poll, E.: An overview of JML tools and applications. Software Tools for
Technology Transfer 7(3) (June 2005) 212–232

4. Chen, F., Rosu, G.: MOP: An efficient and generic runtime verification framework.
In Gabriel, R.P., Bacon, D.F., Lopes, C.V., Jr., G.L.S., eds.: OOPSLA, ACM (2007)
569–588

5. Havelund, K., Rosu, G.: An overview of the runtime verification tool Java PathEx-
plorer. Formal Methods in System Design 24(2) (2004) 189–215

6. Stolz, V., Bodden, E.: Temporal assertions using AspectJ. Electr. Notes Theor.
Comput. Sci. 144(4) (2006) 109–124

7. Jackson, D., Fekete, A.: Lightweight analysis of object interactions. In Kobayashi,
N., Pierce, B.C., eds.: TACS. Volume 2215 of Lecture Notes in Computer Science.,
Springer (2001) 492–513

8. IEEE: IEEE Standard 1850 - Property Specification Language (PSL) (2005)
9. Pawlak, R., Noguera, C., Petitprez, N.: Spoon: Program Analysis and Transfor-

mation in Java. Research Report RR-5901, INRIA (2006)
10. Latvala, T.: Efficient model checking of safety properties. In Ball, T., Rajamani,

S.K., eds.: Model Checking Software, 10th International SPIN Workshop. Portland,
OR, USA, May 9-10, 2003, Proceedings. Volume 2648 of Lecture Notes in Computer
Science., Springer (2003) 74–88

11. Havelund, K., Roşu, G.: Efficient monitoring of safety properties. Software Tools
for Technology Transfer (STTT) 6(2) (2004) 158–173

12. Lampinen, J.: Interface specification methods for software components. Research
Report TKK-ICS-R4, Helsinki University of Technology, Department of Informa-
tion and Computer Science, Espoo, Finland (June 2008)

13. Sen, K., Agha, G.: CUTE and jCUTE: Concolic unit testing and explicit path
model-checking tools. In Ball, T., Jones, R.B., eds.: CAV. Volume 4144 of Lecture
Notes in Computer Science., Springer (2006) 419–423

14. Tillmann, N., de Halleux, J.: Pex-white box test generation for .net. In Beckert,
B., Hähnle, R., eds.: TAP. Volume 4966 of Lecture Notes in Computer Science.,
Springer (2008) 134–153

15. de Alfaro, L., Henzinger, T.A.: Interface theories for component-based design. In
Henzinger, T.A., Kirsch, C.M., eds.: EMSOFT. Volume 2211 of Lecture Notes in
Computer Science., Springer (2001) 148–165

