Skip to main content

On the Evaluation of Segmentation Methods for Wildland Fire

  • Conference paper
Advanced Concepts for Intelligent Vision Systems (ACIVS 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5807))

  • 1782 Accesses

Abstract

This paper focuses on the study of fire color spaces and the evaluation of image segmentation methods commonly available in the literature of wildland and urban fires. The evaluation method, based on the determination of a segmentation quality index, is applied on three series of fire images obtained at the usual scales of validation of forest fire models (laboratory scale, fire tunnel scale and field scale). Depending on the considered scale, different methods reveal themselves as being the most appropriate. In this study we present the advantages and drawbacks of different segmentation algorithms and color spaces used in fire detection and characterization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Séro-Guillaume, O., Ramezani, S., Margerit, J., Calogine, D.: On large scale forest fires propagation models. International Journal of Thermal Sciences 47(6), 680–694 (2008)

    Article  Google Scholar 

  2. Zhou, X., Weise, D., Mahalingamx, S.: Experimental measurements and numerical modeling of marginal burning in live chaparral fuel beds. Proceedings of the Combustion Institute 30, 2287–2294 (2005)

    Article  Google Scholar 

  3. Santoni, P.A., Simeoni, A., Rossi, J.L., Bosseur, F., Morandini, F., Silvani, X., Balbi, J.H., Cancellieri, D., Rossi, L.: Instrumentation of wildland fire: Characterisation of a fire spreading through a Mediterranean shrub. Fire Safety Journal 41(3), 171–184 (2006)

    Article  Google Scholar 

  4. Chetehouna, K., Séro-Guillaume, O., Sochet, I., Degiovanni, A.: On the experimental determination of flame front positions and of propagation parameters for a fire. International Journal of Thermal Sciences 47(9), 1148–1157 (2008)

    Article  Google Scholar 

  5. Silvani, X., Morandini, F.: Fire spread experiments in the field: Temperature and heat fluxes measurements. Fire Safety Journal 44(2), 279–285 (2009)

    Article  Google Scholar 

  6. Martinez-de Dios, J.R., Arrue, B.C., Ollero, A., Merino, L., Gómez-Rodríguez, F.: Computer vision techniques for forest fire perception. Image and Vision Computing 26(4), 550–562 (2008)

    Article  Google Scholar 

  7. Chetehouna, K., Zarguili, I., Séro-Guillaume, O., Giroud, F., Picard, C.: On the two ways for the computing of the fire front positions and the rate of spread. Modelling, Monitoring and Management of Forest Fires. WIT Transactions on Ecology and the Environment 119, 3–12 (2008)

    Article  Google Scholar 

  8. Rossi, L., Akhloufi, M.: Dynamic fire 3D modeling using a real-time stereovision system. In: International Joint Conferences on Computer, Information, and Systems Sciences, and Engineering (CIS2E 2008), December 5-13 (2008)

    Google Scholar 

  9. Chen, T., Wu, P., Chiou, Y.: An early fire-detection method based on image processing. In: Proceeding of International Conference on Image Processing, ICIP 2004, pp. 1707–1710 (2004)

    Google Scholar 

  10. Ko, B.C., Cheong, K.H., Nam, J.Y.: Fire detection based on vision sensor and support vector machines. Fire Safety Journal 44(3), 322–329 (2009)

    Article  Google Scholar 

  11. Celik, T., Demirel, H.: Fire detection in video sequences using a generic color model. Fire Safety Journal 44(2), 147–158 (2009)

    Article  Google Scholar 

  12. Zhang, Y.J.: A survey on evaluation methods for image segmentation. Pattern Recognition 29(8), 1335–1346 (1996)

    Article  Google Scholar 

  13. Chabrier, S., Emile, B., Rosenberger, C., Laurent, H.: Unsupervised performance evaluation of image segmentation. EURASIP Journal on Applied Signal Processing, Special issue on performance evaluation in image processing, 1–12 (2006)

    Google Scholar 

  14. Hafiane, A., Chabrier, S., Rosenberger, C., Laurent, H.: A new supervised evaluation criterion for region based segmentation methods. In: Blanc-Talon, J., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2007. LNCS, vol. 4678, pp. 439–448. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  15. Unnikrishnan, R., Pantofaru, C., Hebert, M.: Toward objective evaluation of image segmentation algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(6), 929–944 (2007)

    Article  Google Scholar 

  16. Zhang, H., Fritts, J.E., Goldman, S.A.: Image segmentation evaluation: A survey of unsupervised methods. Computer Vision and Image Understanding 110(2), 260–280 (2008)

    Article  Google Scholar 

  17. Chabrier, S., Laurent, H., Emile, B.: Psychovisual evaluation of image segmentation results. In: IEEE Conference on Signal Processing, ICSP (2006)

    Google Scholar 

  18. Vinet, L.: Segmentation et mise en correspondance de regions de paires dimages stereoscopiques, Ph.D. dissertation, Universite de Paris IX Dauphine, Juillet (1991)

    Google Scholar 

  19. Huang, Q., Dom, B.: Quantitative methods of evaluating image segmentation. In: International Conference on Image Processing (ICIP 1995), Washington, DC, USA, vol. 3, pp. 53–56 (1995)

    Google Scholar 

  20. Yasnoff, W.A., Mui, J.K., Bacus, J.W.: Error measures for scene segmentation. Pattern Recognition 9, 217–231 (1977)

    Article  Google Scholar 

  21. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: International Conference on Computer Vision (ICCV), July 2001, pp. 416–423 (2001)

    Google Scholar 

  22. Rudz, S., Chetehouna, K., Séro-Guillaume, O.: Determination of the Flame Fire Front Characteristics by Means of a Flame Model and Inverse Method. In: Proceedings of 6th Mediterranean Combustion Symposium, Corsica, pp. 7–11 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rudz, S., Chetehouna, K., Hafiane, A., Sero-Guillaume, O., Laurent, H. (2009). On the Evaluation of Segmentation Methods for Wildland Fire. In: Blanc-Talon, J., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2009. Lecture Notes in Computer Science, vol 5807. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04697-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04697-1_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04696-4

  • Online ISBN: 978-3-642-04697-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics