Skip to main content

3D Filtering of Colour Video Sequences Using Fuzzy Logic and Vector Order Statistics

  • Conference paper
Advanced Concepts for Intelligent Vision Systems (ACIVS 2009)

Abstract

Novel approach designed in this paper permits the suppression of impulsive noise in multichannel video sequences. It employs the fuzzy logic and vector order statistic methods to detect motion and noise presence during spatial-temporal processing neighbouring video frames, preserving the edges, fine details, as well as colour properties. Numerous simulation results have justified it excellent performance in terms of objective criteria: Pick Signal-to- Noise Ratio (PSNR), Mean Absolute Error (MAE) and Normalized Colour Difference (NCD), as well as in subjective perception by human viewer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Schulte, S., Morillas, S., Gregori, V., Kerre, E.: A New Fuzzy Color Correlated Impulse Noise Reduction Method Trans. on Image Proc.  16(10), 2565–2575 (2007)

    Google Scholar 

  2. Plataniotis, K.N., Androutsos, D., Vinayagamoorthy, S., Venetsanopoulos, A.N.: Color Image Processing Using Adaptive Multichannel Filters. IEEE Transactions on Image Processing 6(7), 933–949 (1997)

    Article  Google Scholar 

  3. Ponomaryov, V.I., Gallegos-Funes, F.J., Rosales-Silva, A.: Real-time color imaging based on RM-Filters for impulsive noise reduction. Journal of Imaging Science and Technology 49(3), 205–219 (2005)

    Google Scholar 

  4. Trahanias, P.E., Venetsanopoulos, A.N.: Vector Directional Filters. A new class of multichannel image processing Filters. IEEE Trans. on Image Processing 2, 528–534 (1993)

    Article  Google Scholar 

  5. Lukac, R., Smolka, B., Plataniotis, K.N., Venetsanopoulos, A.N.: Selection Weighted Vector Directional Filters. Comput. Vision and Image Understanding 94, 140–167 (2004)

    Article  MATH  Google Scholar 

  6. Smolka, B., Lukac, R., Chydzinski, A., Plataniotis, K.N., Wojciechowski, W.: Fast Adaptive Similarity Based Impulsive Noise Reduction Filter. Real-Time Imaging 9(4), 261–276 (2003)

    Article  Google Scholar 

  7. Yin, H.B., Fang, X.Z., Wei, Z., Yang, X.K.: An Improved Motion-Compensated 3-D LLMMSE Filter With Spatio–Temporal Adaptive Filtering Support. IEEE Trans. on Circuits and Syst. for Video Techn. 17(12), 1714–1727 (2007)

    Article  Google Scholar 

  8. Varghese, G., Wang, Z.: Video Denoising using a Spatiotemporal Statistical Model of Wavelet Coefficient. In: Proc. of the IEEE ICASSP Int. Conf., pp. 1257–1260 (2005)

    Google Scholar 

  9. Rusanovskyy, D., Dabov, K., Egiazarian, K.: Moving-Window Varying Size 3D Transform-Based Video Denoising. In: Proc. of IEEE Int. Conf. VPQM 2006, Scottdale, USA, pp. 1–4 (2006)

    Google Scholar 

  10. Protter, M., Elad, M.: Image Sequence Denoising via Sparse and Redundant Representations. IEEE Trans. on Image Procces 18(1), 27–35 (2007)

    Article  MathSciNet  Google Scholar 

  11. Sen, D., Swamy, M.N.S., Ahmad, M.O.: Computationally fast techniques to reduce AWGN and speckle in videos. IET Image Process 1(4), 319–334 (2007)

    Article  Google Scholar 

  12. Ghazal, M., Amer, A., Ghrayeb, A.: A Real-Time Technique for Spatio–Temporal Video Noise Estimation. IEEE Trans. on Circuits and Syst. For Video Techn. 17(12), 1690–1699 (2007)

    Article  Google Scholar 

  13. Guo, L., Au, O.C., Ma, M., Liang, Z.: Temporal Video Denoising Based on Multihypothesis Motion Compensation. IEEE Trans. on Image Proc. (2009)

    Google Scholar 

  14. Jin, F., Fieguth, P., Winger, L.: Wavelet Video Denoising with Regularized Multiresolution Motion Estimation. EURASIP Journal on Applied Signal Processing, Art. ID 72705 1–11 (2006)

    Google Scholar 

  15. Mélange, T., Nachtegael, M., Kerre, E.E., Zlokolica, V., Schulte, S., De Witte, V., Pižurica, A., Philips, W.: Video Denoising by Fuzzy Motion and Details Adaptive Averaging. Journal of Electron. Imaging 17 (2008) 0430051-19

    Google Scholar 

  16. Ponomaryov, V.: Real-time 2D-3D filtering using order statistics based algorithms. Journal of Real-Time Image Processing 1(3), 173–194 (2007)

    Article  Google Scholar 

  17. Zlokolica, V., Philips, W., Van De Ville, D.: A new non-linear filter for video processing. In: Proc. of the third IEEE Benelux Signal Processing Symposium (SPS-2002), Leuven, Belgium, pp. 221–224 (2002)

    Google Scholar 

  18. Ponomaryov, V., Rosales-Silva, A., Golikov, V.: Adaptive and vector directional processing applied to video colour images. Electronics Letters 42(11), 623–624 (2006)

    Article  Google Scholar 

  19. Schulte, S., De Witte, V., Nachtegael, M., Van del Weken, D., Kerre, E.: Fuzzy two-step filter for impulse noise reduction from color images. IEEE Trans. Image Processing 15(11), 3567–3578 (2006)

    Article  Google Scholar 

  20. Zlokolica, V., Schulte, S., Pizurica, A., Philips, W., Kerre, E.: Fuzzy logic recursive motion detection and denoising of video sequences. Journal of Electronic Imaging 15(2), 23008 (2006)

    Article  Google Scholar 

  21. Bovik, A.: Handbook of Image and Video Processing. Academic Press, San Diego (2000)

    Google Scholar 

  22. Prat, W.K.: Digital Image Processing, 2nd edn. Wiley, New York (1991)

    Google Scholar 

  23. Plataniotis, K.N., Venetsanopoulos, A.N.: Color Image Processing and Applications. Springer, Berlin (2000)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ponomaryov, V., Rosales-Silva, A., Gallegos-Funes, F. (2009). 3D Filtering of Colour Video Sequences Using Fuzzy Logic and Vector Order Statistics. In: Blanc-Talon, J., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2009. Lecture Notes in Computer Science, vol 5807. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04697-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04697-1_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04696-4

  • Online ISBN: 978-3-642-04697-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics