Abstract
Moving object detection is a critical task for many computer vision applications: the objective is the classification of the pixels in the video sequence into either foreground or background. A commonly used technique to achieve it in scenes captured by a static camera is Background Subtraction (BGS). Several BGS techniques have been proposed in the literature but a rigorous comparison that analyzes the different parameter configuration for each technique in different scenarios with precise ground-truth data is still lacking. In this sense, we have implemented and evaluated the most relevant BGS techniques, and performed a quantitative and qualitative comparison between them.
Work supported by the Spanish Government (TEC2007-65400 – SemanticVideo), the Spanish Administration agency CDTI (CENIT-VISION 2007-1007) and the Comunidad de Madrid (S-0505/TIC-0223 - ProMultiDis-CM).
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Cristani, M., Bicego, M., Murino, V.: Multi-level background initialization using Hidden Markov Models. In: First ACM SIGMM Int. workshop on Video surveillance, pp. 11–20 (2003)
Piccardi, M.: Background subtraction techniques: a review. In: SMC 2004, vol. 4, pp. 3099–3104 (2004)
Cheung, S.-C., Kamath, C.: Robust techniques for background subtraction in urban traffic video. In: Panchanathan, S., Vasudev, B. (eds.) Proc. Elect Imaging: Visual Comm. Image Proce. (Part One) SPIE, vol. 5308, pp. 881–892 (2004)
Cucchiara, R.: People Surveillance, VISMAC Palermo (2006)
Ewerth, R., Freisleben, B.: Frame difference normalization: an approach to reduce error rates of cut detection algorithms for MPEG videos. In: ICIP, pp. 1009–1012 (2003)
Tang, Z., Miao, Z., Wan, Y.: Background Subtraction Using Running Gaussian Average and Frame Difference. In: Ma, L., Rauterberg, M., Nakatsu, R. (eds.) ICEC 2007. LNCS, vol. 4740, pp. 411–414. Springer, Heidelberg (2007)
Wren, A., Darrell, P.: Pfinder: Real-time tracking of the human body. PAMI (1997)
Cavallaro, A., Steiger, O., Ebrahimi, T.: Semantic video analysis for adaptive content delivery and automatic description. IEEE Transactions on Circuits and Systems for Video Technology 15(10), 1200–1209 (2005)
Stauffer, G.: Adaptive background mixture models for real-time tracking. In: CVPR (1999)
Carminati, L., Benois-Pineau, J.: Gaussian mixture classification for moving object detection in video surveillance environment. In: ICIP, pp. 113–116 (2005)
Comaniciu, D.: Mean shift: a robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and machine Intelligence 24(5), 603 (2002)
Elgammal, A.M., Harwood, D., Davis, L.S.: Non-parametric model for background subtraction. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1843, pp. 751–767. Springer, Heidelberg (2000)
Zivkovic, Z., Van Der Heijden, F.: Efficient adaptive density estimation per image pixel for the task of background subtraction. Pattern Recognition Letters 27(7), 773–780 (2006)
Stenger, B., Ramesh, V., Paragios, N., Coetzee, F., Buhmann, J.M.: Topology Free Hidden Markov Models: Application to Background Modeling. In: Eighth Int. Conf. on Computer Vision, ICCV 2001, vol. 1, pp. 294–301 (2001)
Mittal, A., Paragios, N.: Motion-based background subtraction using adaptive kernel density estimation. In: Proceedings of the Int. Conf. Comp. Vision and Patt. Recog., CVPR, pp. 302–309 (2004)
Tiburzi, F., Escudero, M., Bescós, J., Martínez, J.M.: A Corpus for Motion-based Video-object Segmentation. In: IEEE International Conference on Image Processing (Workshop on Multimedia Information Retrieval), ICIP 2008, SanDiego, USA (2008)
El Baf, F., Bouwmans, T., Vachon, B.: Comparison of Background Subtraction Methods for a Multimedia Application. In: 14th International Conference on systems, Signals and Image Processing, IWSSIP 2007, Maribor, Slovenia, pp. 385–388 (2007)
Parks, D.H., Fels, S.S.: Evaluation of Background Subtraction Algorithms with Post-Processing. In: IEEE Fifth International Conference on Advanced Video and Signal Based Surveillance, AVSS 2008, pp. 192–199 (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Herrero, S., Bescós, J. (2009). Background Subtraction Techniques: Systematic Evaluation and Comparative Analysis. In: Blanc-Talon, J., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2009. Lecture Notes in Computer Science, vol 5807. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04697-1_4
Download citation
DOI: https://doi.org/10.1007/978-3-642-04697-1_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-04696-4
Online ISBN: 978-3-642-04697-1
eBook Packages: Computer ScienceComputer Science (R0)