Abstract
Kolmogorov Superposition Theorem stands that any multivariate function can be decomposed into two types of monovariate functions that are called inner and external functions: each inner function is associated to one dimension and linearly combined to construct a hash-function that associates every point of a multidimensional space to a value of the real interval [0,1]. These intermediate values are then associated by external functions to the corresponding value of the multidimensional function. Thanks to the decomposition into monovariate functions, our goal is to apply this decomposition to images and obtain image compression.
We propose a new algorithm to decompose images into continuous monovariate functions, and propose a compression approach: thanks to the decomposition scheme, the quantity of information taken into account to define the monovariate functions can be adapted: only a fraction of the pixels of the original image have to be contained in the network used to build the correspondence between monovariate functions. To improve the reconstruction quality, we combine KST and multiresolution approach, where the low frequencies will be represented with the highest accuracy, and the high frequencies representation will benefit from the adaptive aspect of our method to achieve image compression.
Our main contribution is the proposition of a new compression scheme: we combine KST and multiresolution approach. Taking advantage of the KST decomposition scheme, the low frequencies will be represented with the highest accuracy, and the high frequencies representation will be replaced by a decomposition into simplified monovariate functions, preserving the reconstruction quality. We detail our approach and our results on different images and present the reconstruction quality as a function of the quantity of pixels contained in monovariate functions.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Brattka, V.: Du 13-ième problème de Hilbert à la théorie des réseaux de neurones : aspects constructifs du théorème de superposition de Kolmogorov. L’héritage de Kolmogorov en mathématiques. Éditions Belin, Paris, pp. 241–268 (2004)
Braun, J., Griebel, M.: On a constructive proof of Kolmogorov’s superposition theorem. Constructive Approximation (2007)
Hecht-Nielsen, R.: Kolmogorov’s mapping neural network existence theorem. In: Proceedings of the IEEE International Conference on Neural Networks III, New York, pp. 11–13 (1987)
Igelnik, B., Pao, Y.-H., LeClair, S.R., Shen, C.Y.: The ensemble approach to neural-network learning and generalization. IEEE Transactions on Neural Networks 10, 19–30 (1999)
Igelnik, B., Parikh, N.: Kolmogorov’s spline network. IEEE transactions on neural networks 14(4), 725–733 (2003)
Igelnik, B., Tabib-Azar, M., LeClair, S.R.: A net with complex weights. IEEE Transactions on Neural Networks 12, 236–249 (2001)
Köppen, M.: On the training of a Kolmogorov Network. In: Dorronsoro, J.R. (ed.) ICANN 2002. LNCS, vol. 2415, p. 474. Springer, Heidelberg (2002)
Lagunas, M.A., Pérez-Neira, A., Nájar, M., Pagés, A.: The Kolmogorov Signal Processor. LNCS, vol. 686, pp. 494–512. Springer, Berlin (1993)
Moon, B.S.: An explicit solution for the cubic spline interpolation for functions of a single variable. Applied Mathematics and Computation 117, 251–255 (2001)
Sprecher, D.A.: An improvement in the superposition theorem of Kolmogorov. Journal of Mathematical Analysis and Applications 38, 208–213 (1972)
Sprecher, D.A.: A numerical implementation of Kolmogorov’s superpositions. Neural Networks 9(5), 765–772 (1996)
Sprecher, D.A.: A numerical implementation of Kolmogorov’s superpositions ii. Neural Networks 10(3), 447–457 (1997)
Sprecher, D.A., Draghici, S.: Space-filling curves and Kolmogorov superposition-based neural networks. Neural Networks 15(1), 57–67 (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Leni, PE., Fougerolle, Y.D., Truchetet, F. (2009). Kolmogorov Superposition Theorem and Wavelet Decomposition for Image Compression. In: Blanc-Talon, J., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2009. Lecture Notes in Computer Science, vol 5807. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04697-1_5
Download citation
DOI: https://doi.org/10.1007/978-3-642-04697-1_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-04696-4
Online ISBN: 978-3-642-04697-1
eBook Packages: Computer ScienceComputer Science (R0)