Skip to main content

Local Color Descriptor for Object Recognition across Illumination Changes

  • Conference paper
Advanced Concepts for Intelligent Vision Systems (ACIVS 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5807))

  • 1804 Accesses

Abstract

In the context of object recognition, it is useful to extract, from the images, efficient local descriptors that are insensitive to the illumination conditions, to the camera scale factor and to the position and orientation of the object. In this paper, we propose to cope with this invariance problem by applying a spatial transformation to the local regions around detected key points. The new position of each pixel after this local spatial transformation is evaluated according to both the colors and the relative positions of all the pixels in the original local region. The descriptor of the considered local region is the set of the new positions of three particular pixels in this region. The invariance and the discriminating power of our local descriptor is assessed on a public database.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Barnard, K., Martin, L., Coath, A., Funt, B.: A data set for colour research. Color Research and Application 27, 147–151 (2002)

    Article  Google Scholar 

  2. Li, J., Allinson, N.M.: A comprehensive review of current local features for computer vision. Neurocomput. 71, 1771–1787 (2008)

    Article  Google Scholar 

  3. Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Trans. Pattern Anal. Machine Intell. 27, 1615–1630 (2005)

    Article  Google Scholar 

  4. Lowe, D.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  5. Geusebroek, J.: Compact object descriptors from local colour invariant histograms. In: British Machine Vision Conference, vol. 3, pp. 1029–1038 (2006)

    Google Scholar 

  6. Muselet, D., Trémeau, A.: Illumination invariant spatio-colorimetric normalization. In: Procs. of the Int. Conf. on Pattern Recognition, Tampa, Florida (2008)

    Google Scholar 

  7. Finlayson, G., Hordley, S., Schaefer, G., Tian, G.: Illuminant and device invariant colour using histogram equalisation. In: Procs. of the 9th IS&T/SID Color Imaging Conf., Scottsdale, USA, pp. 205–211 (2003)

    Google Scholar 

  8. Geusebroek, J.M., Burghouts, G.J., Smeulders, A.W.M.: The Amsterdam library of object images. Int. J. Comput. Vision 61, 103–112 (2005)

    Article  Google Scholar 

  9. Gershon, R., Jepson, A.D., Tsotsos, J.K.: From [r,g,b] to surface reflectance: computing color constant descriptors in images. Perception, 755–758 (1988)

    Google Scholar 

  10. Finlayson, G., Hordley, S., Schaefer, G., Tian, G.Y.: Illuminant and device invariant colour using histogram equalisation. Pattern Recognition 38, 179–190 (2005)

    Article  Google Scholar 

  11. Finlayson, G., Schaefer, G.: Colour indexing across devices and viewing conditions. In: Procs. of the 2nd Int. Workshop on Content-Based Multimedia Indexing, Brescia, Italy, pp. 215–221 (2001)

    Google Scholar 

  12. Swain, M.J., Ballard, D.H.: Color indexing. International Journal of Computer Vision 7(1), 11–32 (1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Song, X., Muselet, D., Trémeau, A. (2009). Local Color Descriptor for Object Recognition across Illumination Changes. In: Blanc-Talon, J., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2009. Lecture Notes in Computer Science, vol 5807. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04697-1_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04697-1_56

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04696-4

  • Online ISBN: 978-3-642-04697-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics