Skip to main content

Enabling Effective User Interactions in Content-Based Image Retrieval

  • Conference paper
Information Retrieval Technology (AIRS 2009)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 5839))

Included in the following conference series:

Abstract

This paper presents an interactive content-based image retrieval framework—uInteract, for delivering a novel four-factor user interaction model visually. The four-factor user interaction model is an interactive relevance feedback mechanism that we proposed, aiming to improve the interaction between users and the CBIR system and in turn users overall search experience. In this paper, we present how the framework is developed to deliver the four-factor user interaction model, and how the visual interface is designed to support user interaction activities. From our preliminary user evaluation result on the ease of use and usefulness of the proposed framework, we have learnt what the users like about the framework and the aspects we could improve in future studies. Whilst the framework is developed for our research purposes, we believe the functionalities could be adapted to any content-based image search framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bates, M.J.: Where should the person stop and the information search interface start? Information Processing and Management 26(5), 575–591 (1990)

    Article  Google Scholar 

  2. Campbell, I.: Interactive evaluation of the ostensive model using a new test collection of images with multiple relevance assessments. Journal of Information Retrieval 2(1) (2000)

    Google Scholar 

  3. Deselaers, T., Keysers, D., Ney, H.: Fire – flexible image retrieval engine: Imageclef 2004 evaluation. In: Peters, C., Clough, P., Gonzalo, J., Jones, G.J.F., Kluck, M., Magnini, B. (eds.) CLEF 2004. LNCS, vol. 3491, pp. 688–698. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  4. Heesch, D., Rüger, S.: Performance boosting with three mouse clicks-relevance feedback for CBIR. In: Proceeding of the European Conference on IR Research 2003 (2003)

    Google Scholar 

  5. Hopfgartner, F., Urban, J., Villa, R., Jose, J.: Simulated testing of an adaptive multimedia information retrieval system. In: Proceeding of Content-Based Multimedia Indexing (CBMI), pp. 328–335 (2007)

    Google Scholar 

  6. Liu, H., Uren, V., Song, D., Rüger, S.: A four-factor user interaction model for content-based image retrieval. In: Proceeding of the 2nd international conference on the theory of information retrieval, ICTIR (2009)

    Google Scholar 

  7. Müller, H., Müller, W., Marchand-Maillet, S., Pun, T.: Strategies for positive and negative relevance feedback in image retrieval. In: Proceedings of the International Conference on Pattern Recognition (ICPR 2000), Barcelona, Spain, September 2000, vol. 1, pp. 1043–1046 (2000)

    Google Scholar 

  8. Pickering, M.J., Rüger, S.: Evaluation of key frame-based retrieval techniques for video. Computer Vision and Image Understanding 92(2-3), 217–235 (2003)

    Article  Google Scholar 

  9. Ruthven, I., Lalmas, M., van Rijsbergen, K.: Incorporating user search behaviour into relevance feedback. Journal of the American Society for Information Science and Technology 54(6), 528–548 (2003)

    Article  Google Scholar 

  10. Spink, A., Greisdorf, H., Bateman, J.: From highly relevant to not relevant: examining different regions of relevance. Information Processing Management 34(5), 599–621 (1998)

    Article  Google Scholar 

  11. Urban, J., Jose, J.M.: Ego: A personalized multimedia management and retrieval tool. International Journal of Intelligent Systems 21, 725–745 (2006)

    Article  MATH  Google Scholar 

  12. Urban, J., Jose, J.M., van Rijsbergen, K.: An adaptive technique for content-based image retrieval. Multimedia Tools and Applications 31, 1–28 (2006)

    Article  Google Scholar 

  13. White, R.W., Ruthven, I.: A study of interface support mechanisms for interactive information retrieval. Journal of the American Society for Information Science and Technology (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liu, H., Zagorac, S., Uren, V., Song, D., Rüger, S. (2009). Enabling Effective User Interactions in Content-Based Image Retrieval. In: Lee, G.G., et al. Information Retrieval Technology. AIRS 2009. Lecture Notes in Computer Science, vol 5839. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04769-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04769-5_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04768-8

  • Online ISBN: 978-3-642-04769-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics