General
Directional sensitivity to local stimuli by retinal ganglion cells are related to processes which probably are located at the Inner Plexiform Layer of the retina, at the ganglion cells dendrites and it is the result of at least two mechanisms. First, at the ganglion dendrites, either by postsynaptic inhibition from amacrines or by presynaptic inhibition of bipolar synapses, also by amacrines. Second, there seems to be an “intrinsic” amacrine directionality by the so called “starbust” amacrines which is itself emphasized by amacrine-amacrine interaction and then transmitted, by inhibition, to presynaptic ganglia connections [1], [2], [3].
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Fried, S.I., Masland, R.H.: Image Processing: How the Retina Detects the Direction of Image Motion. Current Biology 17(2), R63–R66 (2007)
Taylor, W.R., He, S., Levick, W.R., Vaney, D.I.: Dendritic Computation of Direction Selectivity by Retinal Ganglion Cells. Science 289, 2347–2350 (2000)
Fried, S.I., Münch, T.A.: Mechanisms and Circuitry Underlying Directional Selectivity. Nature 40, 411–413 (2002)
Moreno-Díaz Jr., R.: Computación Paralela y Distribuida: Relaciones Estructura-Función en Retinas. Ph.D. Thesis, Universidad de Las Palmas de G.C (1993)
Moreno-Diaz, R., de Blasio, G.: Systems and Computational Tools for Neuronal Retinal Models. In: Moreno-Díaz Jr., R., Pichler, F. (eds.) EUROCAST 2003. LNCS, vol. 2809, pp. 494–505. Springer, Heidelberg (2004)
Moreno-Díaz, R., de Blasio, G., Moreno-Díaz, A.: A Framework for Modelling Competitive and Cooperative Computation in Retinal Processing. In: Ricciardi, L.M., Buonocuore, A., Pirozzi, E. (eds.) Collective Dynamics: Topics on Competition and Cooperation in the Biosciences, pp. 88–97. American Institute of Physics, New York (2008)
Yoshida, K., Watanabe, D., Ishikane, H., Tachibana, M., Pastan, I., Nakanishi, S.: A Key Role of Starburst Amacrine Cells in Originating Retinal Directional Selectivity and Optokinetic Eye Movement. Neuron 30, 771–780 (2001)
Moreno-Diaz, R., de Blasio, G.: Systems Methods in Visual Modelling. Sys. Anal. Model Simul. 43, 1159–1171 (2003)
Marr, D., Vision, W.H.: Freeman and Company, San Fransisco (1982)
Rodieck, R.W., Stone, J.: Response of Cat Retinal Ganglion Cells to Moving Visual Patterns. J. Neurophysiol. 28, 819–832 (1965)
Lettvin, J.T., Maturana, H.R., McCulloch, W.S., Pitts, W.H.: What the Frog’s Eye Tells the Frog’s Brain? Proc. of the I.R.E. 47(11), 1940–1951 (1959)
Hammond, P.: Contrasts in Spatial Organization of Receptive Fields at Geniculate and Retinal Levels: Centre Surround and Outer Surround. J. Physiol. 228, 115–137 (1973)
Li, C.Y., Zhou, Y.X., Pei, X., Qiu, F.T., Tang, C.Q., Xu, X.Z.: Extensive Disinhibitory Region Beyond the Classical Receptive Field of Cat Retinal Ganglion Cells. Vision Res. 32(2), 219–228 (1992)
Troy, J.B., Shou, T.: The Receptive Fields of Cat Retinal Ganglion Cells in Phisiological and Pathological States: Where We Are After Half a Century of Research. Progress in Retinal and Eye Research 21, 263–302 (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
de Blasio, G., Moreno-Díaz, R., Moreno-Díaz, R. (2009). Analytical Representation of Intrinsic Directionality in Retinal Cells. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds) Computer Aided Systems Theory - EUROCAST 2009. EUROCAST 2009. Lecture Notes in Computer Science, vol 5717. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04772-5_5
Download citation
DOI: https://doi.org/10.1007/978-3-642-04772-5_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-04771-8
Online ISBN: 978-3-642-04772-5
eBook Packages: Computer ScienceComputer Science (R0)