Abstract
We applied an Island Model Genetic Algorithm (GA) to a Multi-Agent System (MAS) modeled in Cellular Automata (CA) in order to find the optimal behavior of the agents. The agents’ task is to visit all free cells in a cellular grid containing obstacles as fast as possible. For this investigation we used a previously defined set of five different environments. The agents are controlled by a finite state machine with a restricted number of states and outputs (actions of the agents). Finite state machines with 4 to 7 states have been evolved by the GA. We compared the effectiveness (quality of solutions) and efficiency of the GA to an exhaustive search of all possible solutions. A special hardware (FPGA logic) has been used to enumerate and evaluate all 6-state finite state machines. The results show that the GA is much faster but almost as effective as the exhaustive search.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Halbach, M., Heenes, W., Hoffmann, R., Tisje, J.: Optimizing the behavior of a moving creature in software and in hardware. In: Sloot, P.M.A., Chopard, B., Hoekstra, A.G. (eds.) ACRI 2004. LNCS, vol. 3305, pp. 841–850. Springer, Heidelberg (2004)
Halbach, M., Hoffmann, R.: Parallel hardware architecture to simulate movable creatures in the CA model. In: Malyshkin, V.E. (ed.) PaCT 2007. LNCS, vol. 4671, pp. 418–431. Springer, Heidelberg (2007)
Halbach, M.: Algorithmen und Hardwarearchitekturen zur optimierten Aufzählung von Automaten und deren Einsatz bei der Simulation künstlicher Kreaturen. PhD thesis, Technische Universität Darmstadt (2008)
Ediger, P., Hoffmann, R., Halbach, M.: How efficient are creatures with time-shuffled behaviors? In: PASA. LNI, vol. 124, pp. 93–103. GI (2008)
Komann, M., Ediger, P., Fey, D., Hoffmann, R.: On the effectivity of genetic programming compared to the time-consuming full search of optimal 6-state automata. In: Vanneschi, L., Gustafson, S., Ebner, M. (eds.) EuroGP 2009. LNCS. Springer, Heidelberg (2009)
Halbach, M., Hoffmann, R.: Solving the exploration’s problem with several creatures more efficiently. In: Moreno Díaz, R., Pichler, F., Quesada Arencibia, A. (eds.) EUROCAST 2007. LNCS, vol. 4739, pp. 596–603. Springer, Heidelberg (2007)
Mesot, B., Sanchez, E., Peña, C.-A., Pérez-Uribe, A.: SOS++: Finding smart behaviors using learning and evolution. In: Standish, R., Bedau, M., Abbass, H. (eds.) Artificial Life VIII, pp. 264–273. MIT Press, Cambridge (2002)
Sanchez, E., Pérez-Uribe, A., Mesot, B.: Solving partially observable problems by evolution and learning of finite state machines. In: Liu, Y., Tanaka, K., Iwata, M., Higuchi, T., Yasunaga, M. (eds.) ICES 2001. LNCS, vol. 2210, pp. 267–278. Springer, Heidelberg (2001)
Di Stefano, B.N., Lawniczak, A.T.: Autonomous roving object’s coverage of its universe. In: CCECE, pp. 1591–1594. IEEE, Los Alamitos (2006)
Halbach, M., Hoffmann, R., Both, L.: Optimal 6-state algorithms for the behavior of several moving creatures. In: El Yacoubi, S., Chopard, B., Bandini, S. (eds.) ACRI 2006. LNCS, vol. 4173, pp. 571–581. Springer, Heidelberg (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ediger, P., Hoffmann, R., Halbach, M. (2009). Evolving 6-State Automata for Optimal Behaviors of Creatures Compared to Exhaustive Search. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds) Computer Aided Systems Theory - EUROCAST 2009. EUROCAST 2009. Lecture Notes in Computer Science, vol 5717. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04772-5_89
Download citation
DOI: https://doi.org/10.1007/978-3-642-04772-5_89
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-04771-8
Online ISBN: 978-3-642-04772-5
eBook Packages: Computer ScienceComputer Science (R0)