Abstract
Presented is preliminary study of the role of data structures in algorithms for formal concept analysis. Studied is performance of selected algorithms in dependence on chosen data structures and size and density of input object-attribute data. The observations made in the paper can be seen as guidelines on how to select data structures for implementing algorithms for formal concept analysis.
Supported by institutional support, research plan MSM 6198959214.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Belohlavek, R., De Baets, B., Outrata, J., Vychodil, V.: Inducing decision trees via concept lattices. Int. J. General Systems 38(4), 455–467 (2009)
Belohlavek, R., Vychodil, V.: Discovery of optimal factors in binary data via a novel method of matrix decomposition. Journal of Computer and System Sciences (to appear)
Carpineto, C., Romano, G.: Concept data analysis. Theory and applications. J. Wiley, Chichester (2004)
Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. The MIT Press, Cambridge (2001)
Ganter, B.: Two basic algorithms in concept analysis. Technical Report FB4-Preprint No. 831. TH Darmstadt (1984)
Ganter, B., Wille, R.: Formal concept analysis. Mathematical foundations. Springer, Berlin (1999)
Johnson, D.S., Yannakakis, M., Papadimitriou, C.H.: On generating all maximal independent sets. Information Processing Letters 27(3), 119–123 (1988)
Kuznetsov, S.: Interpretation on graphs and complexity characteristics of a search for specific patterns. Automatic Documentation and Mathematical Linguistics 24(1), 37–45 (1989)
Kuznetsov, S.: A fast algorithm for computing all intersections of objects in a finite semi-lattice (Бьстрый алгоритм построения всех пересечений объектовиз конечной полурешетки in Russian). Automatic Documentation and Mathematical Linguistics 27(5), 11–21 (1993)
Kuznetsov, S.: Learning of Simple Conceptual Graphs from Positive and Negative Examples. In: Żytkow, J.M., Rauch, J. (eds.) PKDD 1999. LNCS (LNAI), vol. 1704, pp. 384–391. Springer, Heidelberg (1999)
Kuznetsov, S., Obiedkov, S.: Comparing performance of algorithms for generating concept lattices. J. Exp. Theor. Artif. Int. 14, 189–216 (2002)
Levitin, A.V.: Introduction to the Design and Analysis of Algorithms. Addison Wesley, Reading (2002)
Lindig, C.: Fast concept analysis. In: Working with Conceptual Structures––Contributions to ICCS 2000, pp. 152–161. Shaker Verlag, Aachen (2000)
Norris, E.M.: An Algorithm for Computing the Maximal Rectangles in a Binary Relation. Revue Roumaine de Mathématiques Pures et Appliques 23(2), 243–250 (1978)
Outrata, J., Vychodil, V.: Fast algorithm for computing fixpoints of Galois connections induced by object-attribute relational data (submitted)
Sedgewick, R.: Left-leaning red-black trees, http://www.cs.princeton.edu/~rs/talks/LLRB/LLRB.pdf
Wille, R.: Restructuring lattice theory: an approach based on hierarchies of concepts. In: Ordered Sets, Dordrecht-Boston, pp. 445–470 (1982)
Zaki, M.J.: Mining non-redundant association rules. Data Mining and Knowledge Discovery 9, 223–248 (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Krajca, P., Vychodil, V. (2009). Comparison of Data Structures for Computing Formal Concepts. In: Torra, V., Narukawa, Y., Inuiguchi, M. (eds) Modeling Decisions for Artificial Intelligence. MDAI 2009. Lecture Notes in Computer Science(), vol 5861. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04820-3_11
Download citation
DOI: https://doi.org/10.1007/978-3-642-04820-3_11
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-04819-7
Online ISBN: 978-3-642-04820-3
eBook Packages: Computer ScienceComputer Science (R0)