Skip to main content

Combining Various Methods of Automated User Decision and Preferences Modelling

  • Conference paper
Modeling Decisions for Artificial Intelligence (MDAI 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5861))

  • 883 Accesses

Abstract

In this paper we present a proposal of a system that combines various methods of user modelling. This system may find its application in e-commerce, recommender systems, etc. The main focus of this paper is on automatic methods that require only a small amount of data from user. The different ways of integration of user models are studied. A proof-of-concept implementation is compared to standard methods in an initial experiment with artificial user data...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Eckhardt, A.: Inductive models of user preferences for semantic web. In: Pokorný, J., Snášel, V., Richta, K. (eds.) DATESO 2007. CEUR Workshop Proceedings, vol. 235, pp. 108–119. Matfyz Press, Praha (2007)

    Google Scholar 

  2. Eckhardt, A., Horváth, T., Maruščák, D., Novotný, R., Vojtáš, P.: Uncertainty issues in automating process connecting web and user. In: da Costa, P.C.G., d’Amato, C., Fanizzi, N., Laskey, K.B., Laskey, K.J., Lukasiewicz, T., Nickles, M., Pool, M. (eds.) URSW 2005 - 2007. LNCS (LNAI), vol. 5327, pp. 207–223. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  3. Goldberg, D., Nichols, D., Oki, B.M., Terry, D.: Using collaborative filtering to weave an information tapestry. Commun. ACM 35(12), 61–70 (1992)

    Article  Google Scholar 

  4. Shardanand, U., Maes, P.: Social information filtering: algorithms for automating “word of mouth”. In: CHI 1995: Proceedings of the SIGCHI conference on Human factors in computing systems, pp. 210–217. ACM Press/Addison-Wesley Publishing Co. (1995)

    Google Scholar 

  5. Ko, S.J., Lee, J.H.: User preference mining through collaborative filtering and content based filtering in recommender system. In: Bauknecht, K., Tjoa, A.M., Quirchmayr, G. (eds.) EC-Web 2002. LNCS, vol. 2455, pp. 244–253. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  6. Andrejko, A., Barla, M., Bieliková, M., Tvarozek, M.: User characteristics acquisition from logs with semantics. In: Zendulka, J. (ed.) ISIM. CEUR Workshop Proceedings, CEUR-WS.org, vol. 252 (2007)

    Google Scholar 

  7. Joachims, T.: Optimizing search engines using clickthrough data. In: KDD 2002: Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 133–142. ACM Press, New York (2002)

    Chapter  Google Scholar 

  8. Joachims, T., Granka, L., Pan, B., Hembrooke, H., Gay, G.: Accurately interpreting clickthrough data as implicit feedback. In: SIGIR 2005: Proceedings of the 28th annual international ACM SIGIR conference on Research and development in information retrieval, pp. 154–161. ACM, New York (2005)

    Chapter  Google Scholar 

  9. Schafer, B.J., Konstan, J.A., Riedi, J.: Recommender systems in e-commerce. In: ACM Conference on Electronic Commerce, pp. 158–166 (1999)

    Google Scholar 

  10. Lee, D.H., Brusilovsky, P.: Fighting information overflow with personalized comprehensive information access: A proactive job recommender. In: ICAS 2007: Proceedings of the Third International Conference on Autonomic and Autonomous Systems. IEEE Computer Society, Washington (2007)

    Google Scholar 

  11. Middleton, S.E., Shadbolt, N., Roure, D.D.: Capturing interest through inference and visualization: Ontological user profiling in recommender systems. In: K-CAP 2003 (2003)

    Google Scholar 

  12. Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and techniques, 2nd edn. Morgan Kaufmann, San Francisco (2005)

    MATH  Google Scholar 

  13. Eckhardt, A., Horváth, T., Vojtáš, P.: PHASES: A user profile learning approach for web search. In: Lin, T., Haas, L., Motwani, R., Broder, A., Ho, H. (eds.) 2007 IEEE/WIC/ACM International Conference on Web Intelligence - WI 2007, pp. 780–783. IEEE, Los Alamitos (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Eckhardt, A., Vojtáš, P. (2009). Combining Various Methods of Automated User Decision and Preferences Modelling. In: Torra, V., Narukawa, Y., Inuiguchi, M. (eds) Modeling Decisions for Artificial Intelligence. MDAI 2009. Lecture Notes in Computer Science(), vol 5861. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04820-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04820-3_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04819-7

  • Online ISBN: 978-3-642-04820-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics