Abstract
In this paper we present a proposal of a system that combines various methods of user modelling. This system may find its application in e-commerce, recommender systems, etc. The main focus of this paper is on automatic methods that require only a small amount of data from user. The different ways of integration of user models are studied. A proof-of-concept implementation is compared to standard methods in an initial experiment with artificial user data...
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Eckhardt, A.: Inductive models of user preferences for semantic web. In: Pokorný, J., Snášel, V., Richta, K. (eds.) DATESO 2007. CEUR Workshop Proceedings, vol. 235, pp. 108–119. Matfyz Press, Praha (2007)
Eckhardt, A., Horváth, T., Maruščák, D., Novotný, R., Vojtáš, P.: Uncertainty issues in automating process connecting web and user. In: da Costa, P.C.G., d’Amato, C., Fanizzi, N., Laskey, K.B., Laskey, K.J., Lukasiewicz, T., Nickles, M., Pool, M. (eds.) URSW 2005 - 2007. LNCS (LNAI), vol. 5327, pp. 207–223. Springer, Heidelberg (2008)
Goldberg, D., Nichols, D., Oki, B.M., Terry, D.: Using collaborative filtering to weave an information tapestry. Commun. ACM 35(12), 61–70 (1992)
Shardanand, U., Maes, P.: Social information filtering: algorithms for automating “word of mouth”. In: CHI 1995: Proceedings of the SIGCHI conference on Human factors in computing systems, pp. 210–217. ACM Press/Addison-Wesley Publishing Co. (1995)
Ko, S.J., Lee, J.H.: User preference mining through collaborative filtering and content based filtering in recommender system. In: Bauknecht, K., Tjoa, A.M., Quirchmayr, G. (eds.) EC-Web 2002. LNCS, vol. 2455, pp. 244–253. Springer, Heidelberg (2002)
Andrejko, A., Barla, M., Bieliková, M., Tvarozek, M.: User characteristics acquisition from logs with semantics. In: Zendulka, J. (ed.) ISIM. CEUR Workshop Proceedings, CEUR-WS.org, vol. 252 (2007)
Joachims, T.: Optimizing search engines using clickthrough data. In: KDD 2002: Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 133–142. ACM Press, New York (2002)
Joachims, T., Granka, L., Pan, B., Hembrooke, H., Gay, G.: Accurately interpreting clickthrough data as implicit feedback. In: SIGIR 2005: Proceedings of the 28th annual international ACM SIGIR conference on Research and development in information retrieval, pp. 154–161. ACM, New York (2005)
Schafer, B.J., Konstan, J.A., Riedi, J.: Recommender systems in e-commerce. In: ACM Conference on Electronic Commerce, pp. 158–166 (1999)
Lee, D.H., Brusilovsky, P.: Fighting information overflow with personalized comprehensive information access: A proactive job recommender. In: ICAS 2007: Proceedings of the Third International Conference on Autonomic and Autonomous Systems. IEEE Computer Society, Washington (2007)
Middleton, S.E., Shadbolt, N., Roure, D.D.: Capturing interest through inference and visualization: Ontological user profiling in recommender systems. In: K-CAP 2003 (2003)
Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and techniques, 2nd edn. Morgan Kaufmann, San Francisco (2005)
Eckhardt, A., Horváth, T., Vojtáš, P.: PHASES: A user profile learning approach for web search. In: Lin, T., Haas, L., Motwani, R., Broder, A., Ho, H. (eds.) 2007 IEEE/WIC/ACM International Conference on Web Intelligence - WI 2007, pp. 780–783. IEEE, Los Alamitos (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Eckhardt, A., Vojtáš, P. (2009). Combining Various Methods of Automated User Decision and Preferences Modelling. In: Torra, V., Narukawa, Y., Inuiguchi, M. (eds) Modeling Decisions for Artificial Intelligence. MDAI 2009. Lecture Notes in Computer Science(), vol 5861. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04820-3_16
Download citation
DOI: https://doi.org/10.1007/978-3-642-04820-3_16
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-04819-7
Online ISBN: 978-3-642-04820-3
eBook Packages: Computer ScienceComputer Science (R0)