
[0
8:

16
05

-0
7-

20
09

]U
of

Tr
en

to
-D

o
N

O
T

D
is

tr
ib

ut
e

Modeling Associations through Intensional Attributes

Andrea Presa, Yannis Velegrakis, Flavio Rizzolo, and Siarhei Bykau

University of Trento
{apresa,velgias,flavio,bykau}@disi.unitn.eu

Abstract. Attributes, a.k.a. slots or properties, are the main mechanism used to
define associations between concepts or individuals modeling real world entities
in a knowledge base. Traditionally, an attribute is defined by an explicit state-
ment that specifies the name of the attribute and the entities it associates. This
has three main limitations: (i) it is not easy to apply to large amounts of data,
even if they share the same characteristics, since explicit definitions are needed
for each concept or individual; (ii) it cannot handle future data, i.e., when new
concepts or individuals are inserted in the knowledge base their attributes need to
be explicitly defined; and (iii) it assumes that the data engineer, or the user that
is introducing a new attribute, has access and privileges to modify the respective
objects. The above may not be practical in many real ontology application sce-
narios. We are introducing a new form of attribute in which the domain and range
are not specified explicitly but intensionally, through a query that defines the set
of concepts or individuals being associated. We provide the formal semantics of
this new form of attribute, describe how to overcome syntax constraints that pre-
vent the use of the proposed attribute, study its behavior, show efficient ways of
implementation, and experiment with alternative evaluation strategies.

1 Introduction
We are witnessing a tremendous increase in the amount of data that is becoming avail-
able online. To effectively access this data, we need to be able to successfully under-
stand its semantics. Schemas have to a large degree contributed towards that direction,
but they have not fully fulfilled their role – they are mainly driven by performance or
technical motivations and do not always communicate accurately the semantics of the
data. For modeling complex data semantics, ontologies, rather than schemas, are typi-
cally used. Ontologies are free from the structural restrictions that schemas have. A ten
thousand feet view of an ontology is a collection of concepts (or classes) and individ-
uals (or instances) associated through isA and attribute relationships. In the ontology
jargon [1], the latter are referred to as slots or properties and they are used to describe
features of a class or an individual. Each attribute has a type and can be restricted to
draw its values from a specific pool of values.

A limitation of the attribute modeling constructs in current ontology formalisms is
their static nature. More specifically, the existence of an attribute between two concepts
or individuals depends solely on whether the slot has been explicitly defined or not.
This prevents the implementation of batch assignment of attributes to groups of con-
cepts/individuals that are currently present in the knowledge base or that may appear in
the future. For instance, in many practical scenarios, attributes are assigned to individ-
uals based on some common characteristics. Currently, this task requires first finding

[0
8:

16
05

-0
7-

20
09

]U
of

Tr
en

to
-D

o
N

O
T

D
is

tr
ib

ut
e

the individuals that have these characteristics, iterate over them, and explicitly assign to
them the attribute of interest. Furthermore, if one or more individuals satisfying these
characteristics are introduced at some future point in time, they will not be automati-
cally assigned the attribute, unless a special ad-hoc mechanism has been put in place,
or the ontology administrator manually assigns it to each such individual.

A different issue related to the current ontology mechanisms has to do with the way
additional/super-imposed information can be attached to the structures of a knowledge
base. Recall that ontologies is one of the main vehicles of communicating data seman-
tics. To better achieve that goal, designers typically attach to the ontology constructs
additional information that is not considered part of the ontology itself, yet assists in bet-
ter communicating the data meaning. The RDF/RDFS standard [2, 3] has provisioned
a special single-string text field named comment for that purpose. The comment mech-
anism has two main limitations. First, it confines the ontology engineer to provide a
single piece of plain text, whereas recording a comment that has some structure is typi-
cally more useful. For instance, we may want to insert a comment on an RDF resource
along with the date and the name of the person that created the comment. Current prac-
tices include all that information in the comment text, but the text needs to be parsed
every time the individual parts are to be identified. Second, attaching information to
existing concepts or individuals of an ontology means that the user needs to have the
privileges to do so. This is not always the case since many different users, other than
the ontology owner, may need to add information of different kinds.

In this work, we advocate the need for intensional attributes1, i.e., attributes whose
domain and range have been intensionally defined. Individuals are assigned to the in-
tensional attributes’ domain and range in a similar fashion in which they are assigned to
the extensions of defined concepts in Description Logics (DL) TBoxes [4] (as opposed
to the explicit way individuals are assigned to the primitive concepts). To some extent,
this kind of definition looks also similar to the way derived elements in UML 2 are
defined. However, the notion of intensional attributes is fundamentally different from
both derived elements and derived concepts. Derived elements or concepts are used to
describe entities, while intenional attributes are used to describe derived relationships
between entities. In that sense, intensional attributes do not replace but actually com-
plement DL TBoxes and UML derived elements. In our solution we employ queries
in order to specify the domain and range of the intensional attributes. We claim that
queries are an excellent tool to implement intensional attributes since they provide the
ideal mean to refer to sets of data declaratively. The idea of using queries for intensional
definitions has also been proposed in other forms in different fields [5–9]. However, to
the best of our knowledge, this is the first effort towards using that idea for attributes in
ontologies to tackle the previously presented issues.

Our contributions are the following: (i) we redefine the notion of an attribute to
include those for which the associated concepts or individuals are described intension-
ally; (ii) we describe how we can overcome RDF/RDFS limitations that prevent the use
of the proposed kind of attributes; (iii) we describe how the new form of association
can be realized in OWL and RDF ontologies; (iv) we provide techniques to efficiently

1 the term intensional should not be confused to the term intentional.
2 http://www.uml.org

2

[0
8:

16
05

-0
7-

20
09

]U
of

Tr
en

to
-D

o
N

O
T

D
is

tr
ib

ut
e

Fig. 1. Ontology example

implement ontology browsing and query answering for this new form of association;
(v) we experimentally evaluate alternative techniques and describe our findings.

2 Illustrative Example
To motivate our proposal and illustrate our solution, we describe here an example
drawn from a real application with which we have worked. Consider a financial de-
partment that handles projects funded by the European Union (EU). The EU not only
funds projects in countries that are members of the EU block but also in certain coun-
tries outside it. However, the funding is governed by different regulations depending on
whether the recipient country is inside or outside the block. Consider an ontology mod-
eling countries as illustrated in Figure 1. Countries (class Country) are distinguished as
EU or non-EU through the attribute group. Some readers may (rightfully) claim that the
right modeling of this situation is through two sub-classes of the class Country; however,
this was modeled in practice by an attribute. Each EU country is associated through the
governedBy attribute to the AG/345 regulation (an instance of the Regulation class).
Each such attribute has been explicitly introduced to the respective countries by the on-
tology engineer after checking whether the country belongs or not to the EU block. This
is a laborious task; it requires the data administrator to manually visit each country’s
data, test whether it belongs to the EU block and assign the specific attribute. It also
requires continuous monitoring, so that if a new EU country is introduced, the attribute
governedBy with value AG/345 will be assigned to it. Furthermore, it may be the case
that the specific data engineer does not have full privileges to modify the individual
country.

Our proposal is that the administrator could introduce instead an intensional at-
tribute governedBy as illustrated in Figure 2. The attribute has at one end (as a range)
the individual AG/345, and on the other (as a domain) the query Q1 that selects all the
individual countries belonging to the EU block. For ease of presentation, we use a sim-
plified notation of queries, i.e., x.a=v indicates that the attribute a of class/individual
x has a value v. In reality, we are using an actual query language, but the details will be
described later on. Note how we use the attribute rdf:type=C in order to indicate that the
results of a query are individuals of some specific class C, and that in order to mention a
specific individual or class we use a trivial form of a query (e.g., query Q6 in Figure 2).

3

[0
8:

16
05

-0
7-

20
09

]U
of

Tr
en

to
-D

o
N

O
T

D
is

tr
ib

ut
e

Q1: { x such that x.rdf:type=Country and x.group=“EU” }
Q2: { x such that x.rdf:type=Country and x.population ≤ 20) }
Q3: { x such that x.rdf:type=Country }
Q4: { x such that x.rdf:type=Regulation and x.code=“EMR*” }
Q5: { x such that x.rdf:type=Country and x.funding > 10M and x.funding < 100M }
Q6: { x such that x=AG/345 }
Q7: { x such that x=“Needs to be reviewed” }

Fig. 2. Ontology example with intensional attributes

Apart from the obvious saving in space and human effort for not having to repeat the
attribute for every EU country, using the intensional approach has also the additional
advantage of covering future data. In particular, if a new country becomes a member of
the EU, an ontology administrator following the traditional approach would have to ex-
plicitly associate it to the regulation AG/345. In contrast, using our proposed approach,
the administrator has to do no action: the moment the country becomes a member of
the EU (i.e., by setting the group attribute to the EU value) it automatically satisfies
the conditions of query Q1 and becomes part of its answer set, which has the effect of
attaching attribute governedBy with value AG/345 to it.

As a different example, assume that a user would like to add some super-imposed
information on the countries, indicating that every country with a population smaller
than 20 millions will have to be reviewed. To add this kind of “annotation” on the
countries, the user will have to explicitly introduce it either by utilizing the comment
feature provided by the RDF/RDFS model (assuming of course that the ontology is
expressed in RDF/RDFS) or by adding a special attribute with the appropriate text to
each such country. Allowing the user to add attributes of this kind, as suggested by the
latter solution, may not always be feasible or desirable. It may not be feasible because
the user may not have permissions to edit the ontology. Even if this is not the case, it may
not be desirable since adding attributes to the ontology concepts and individuals without
some control mechanism may alter their semantics. In contrast, by using an intensional
attribute between a string with the aforementioned statement and the query Q2 shown in
Figure 2, the desired result can be achieved even without having permissions to modify
the Country individuals.

Note that queries may exist on either or both parts of an intensional attributes. An
example demonstrating such a situation is the following. EU has introduced a set of fi-
nancial regulations, containing the code “EMR”, that need to be followed by every coun-

4

[0
8:

16
05

-0
7-

20
09

]U
of

Tr
en

to
-D

o
N

O
T

D
is

tr
ib

ut
e

try that is to receive EU funding. Without intensional attributes, the ontology needs to
have on every country a number of attributes mustImplement one for each regulation
that contains the encoding “EMR”. However, using the intensional features, just the at-
tribute mustImplement with domain Q3 and range Q4 as illustrated in Figure 2 will be
enough. (Query Q3 returns the set of all countries and Q4 returns all regulations whose
code attributes contain the string “EMR”.)

Intensional attributes may share the same name as long as their domain and range
queries are different. For instance, consider now that all countries, EU and non-EU,
have to implement regulation AG/345 if the funding they receive is between 10 and 100
million (illustrated by attribute mustImplement with Q5 as domain in Figure 2). Since
all answers of Q5 are countries, then Q5 is included in Q3 and thus all members of
Q5 have already a mustImplement attribute defined (with values from the regulation
individuals in the answer set of query Q4). However, the definition of the new inten-
sional attribute will include AG/345 as an additional regulation that only members of
Q5 must have. This result could not have been achieved by only one intensional at-
tribute mustImplement with domain Q5∪Q3 and range Q4∪Q6 because this definition
would add AG/345 to all countries, even to those whose funding is outside the range
specified by Q5 (i.e., outside 10M<funding<100M). Thus, in order to correctly cap-
ture the requirement, a new intensional attribute mustImplement from Q5 to Q6 has to
be present.

3 Intensional Attributes
As a knowledge base we follow the traditional definition that consists of a set of classes,
individuals and attributes. In particular, we define a knowledge base S as the set of
classes C, individuals I that are instances of classes in C, names N and literals L
belonging to atomic types in a set T . A knowledge base also contains a set of attributes
A. An attribute is a named association between a class and a type or another class, or
between an individual and an atomic value (i.e., literal) or another individual. In other
words,A ⊆ (C×N ×(T ∪C))∪(I×N ×(A∪I)). According to the above definition,
an attribute can be represented as a triple 〈s, p, v〉, where s is a class or an individual, p
is a name (typically referred to as the name of the attribute), and v is a class, a type, an
individual or a literal value.

We extend the above traditional definition of a knowledge base to include a set of
intensional attributes. An intensional attribute is defined as a triple 〈qd, n, qr〉, where
qd is a query that returns a set of classes or individuals, and qr a query that returns a set
of classes, individuals, or literals. A knowledge base with intensional attributes will be
referred to as an intensional base.

Example 1. Figure 2 shows an example of an intensional base. Triples
〈Q3,mustImplement,Q4〉 and 〈Q5,mustImplement,Q6〉 are examples of intensional
attributes. In particular, 〈Q1,governedBy,Q6〉 and 〈Q2,comment,Q7〉 are attributes in
which one of the two queries returns always only one element in its answer set: Q6
returns always the individual AG/345, and Q7 the literal “Needs to be reviewed”.

5

[0
8:

16
05

-0
7-

20
09

]U
of

Tr
en

to
-D

o
N

O
T

D
is

tr
ib

ut
e

Intuitively, an intensional attribute 〈qd, n, qr〉 is a short-hand for a set of attributes
(each one with the same name n) between a member in the answer set of query qd and
a member in the answer set of the query qr.

Example 2. Consider again the example of Figure 2. Attribute mustImplement is equiv-
alent to the addition of an attribute mustImplement from every element in the result set
of Q3 (i.e., every country) to every element in the result set of query Q4, i.e., every regu-
lation containing the string “EMR” in its code. Similarly, the semantics of governedBy is
to associate to every EU country a governedBy attribute to regulation AG/345. Finally,
the semantics of comment is to attach the string literal “Needs to be reviewed” to every
country with population smaller than 20 millions.

The formal semantics of an intensional base, and consequently of the intensional at-
tributes in it, are realized through the notion of the canonical base. Intuitively, a canon-
ical base is an intensional base in which every intensional attribute has been replaced
by the set of traditional attributes it represents.

Definition 1. Let S=〈C, I, T ,L,A,D〉 be an intensional base, where C, I, T ,L,A,D
are the classes, individuals, types, literals, attributes and intensional attributes re-
spectively. The canonical base of S, denoted as Can(S), is a knowledge base
〈C, I, T ,L,A′〉 for which A′=A ∪ {〈rd, n, rr〉 | ∃〈qd, n, qr〉 ∈ D: rd ∈ eval(qd) ∧
rr ∈ eval(qr)}. The function eval is a function that evaluates the query provided as an
argument and returns its results.

The semantics of the knowledge base with intensional attributes are the same as the
semantics of its canonical base.

Definition 2. Let q be a query or a reasoning task over an intensional base S. The
result of q over S is defined as the result of the evaluation of q over Can(S).

Note that according to the above definition, no extension, special adjustments or
operators need to be added to the query language in order to allow querying intensional
bases. Of course, what needs to be adjusted is the actual evaluation mechanism which
will be the topic of Section 5. Furthemore, note that when evaluating queries used in
intensional attributes we do not consider other intensional previously defined attributes.
That way, we avoid having recursive definitions.

To record intensional attributes in RDF, we have extended the RDF/RDFS model by
introducing a new class Query. Every query is represented as an instance of that class,
that has an attribute expression which is a string representing the query expression.
Furthermore, we have created the class Intensional Attribute as a subclass of Property
in which we have restricted the attributes domain and range to instances of the class
Query. Figure 3 illustrates these extensions. The figure provides the major RDF/RDFS
constructs as described by W3C [3] along with our proposed extensions which are in-
dicated in the figure with shadowed nodes.

The queries used in the intensional attributes are queries supported by the system
on which the framework runs. Thus, the complexity of supporting intensional attributes
is only restricted by the complexity of the queries supported by the reasoner of the
system. No additional reasoning is required (in the worst case scenario) than evaluating

6

[0
8:

16
05

-0
7-

20
09

]U
of

Tr
en

to
-D

o
N

O
T

D
is

tr
ib

ut
e

Fig. 3. The RDF/RDFS Schema model, extended to support intensional attributes

the query. However, for the practical class of queries that we consider in the next section
and by using the evaluation technique that is described there, it will be shown that the
complexity for the reasoner is linear to the size of the conditions in the query expression
and the number of the attributes that exist in the knowledge base.

4 Realization of Intensional Attributes
To better understand the intuition behind intensional attributes, one can consider the
paradigm of defined concepts in Description Logics (or DL) [10]. A DL terminological
box (TBox) consists of two kinds of concepts, the primitive and the defined. Primitive
concepts are those whose extensions are specified by explicit statements associating
each individual to the respective concept. A defined concept, on the other hand, is a
concept whose extension is specified through a logical expression. Every individual
that satisfies the expression of a defined concept is considered automatically a member
of its extension. Our proposed intensional attributes can be seen as an extension of the
idea of defined concepts to attributes.

To realize intensional attributes, a solution that easily comes in mind is to exploit the
ability of RDFS on defining domain and range constraints. Unfortunately, we show next
that this is not possible. Let 〈qd,m, qr〉 be an intensional attribute. One can introduce
two defined concepts Cd and Cr, using the query expressions qd and qr, respectively.
Then, attribute m can be defined with concept Cd as domain and concept Cr as range.
A limitation of this approach is that one needs to introduce two new defined concept
for each different intensional attribute. In a relational database, this is similar to create a
view for every query that is to be answered in the system. Naturally, this is not practical,
first because the number of the queries may be large, and second, because access rights
may not permit users to create new views (respectively, concepts). Furthermore, the
knowledge base may be based on core DL, as most of the DL systems, which does not
support the definition of attributes on defined concepts.

An alternative solution that avoids the introduction of new concepts is the use of
the query expression directly in the definition of the property. For instance, the defi-
nition of property governedBy in Figure 2, could have been achieved by using in the
domain part the OWL abstract syntax expression SubClassOf(intersectionOf(Country

7

[0
8:

16
05

-0
7-

20
09

]U
of

Tr
en

to
-D

o
N

O
T

D
is

tr
ib

ut
e

restriction(group value(”EU”))) restriction(governedBy value(AG/345))) which represents
query Q1. This idea, no matter how close it appears to be to what we are trying to
achieve, is fundamentally different from the one behind intensional properties. Accord-
ing to the OWL specifications [11], the semantics of the domain and range classes of
a property is that all its property instances must be between instances of these classes;
however, the property definition itself does not specify what specific individuals partic-
ipate in the property instance. In other words, defining the property hasCar with class
Person as a domain and class Car as a range, does not automatically associate any of
the individuals in the extension of Person with any of the individuals in the extension
of Cars. In contrast, the semantics of the intensional attributes is that every individual
in the extension of the domain class is automatically associated through the property
with every individual in the extension of the range class.

For expressing the queries used in the definitions of the intensional attributes, we
decided to use SPARQL [12] since it is one of the popular ontology query languages. We
need to note, however, that the selection of the language is a design choice and does not
affect the semantics of the intensional attribues. Since the role of intensional attributes is
to associate classes or individuals with other classes, individuals or literals, it is natural
to assume that each such query returns a set of one of those three kinds. Using SPARQL
syntax, we can express queries Q1 through Q7 from Figure 2 as follows:

Q1: select ?x where {?x rdf:type Country . ?x group “EU”}
Q2: select ?x where {?x rdf:type Country . ?x population ?p . FILTER (?p <=20)}
Q3: select ?x where {?x rdf:type Country}
Q4: select ?x where {?x rdf:type Regulation . ?x code “EMR”}
Q5: select ?x where {?x rdf:type Country . ?x funding ?f . FILTER (?f > 10M &&

?f < 100M)}
Q6: select distinct ?x where {?x rdf:type ?y . FILTER (str(?x) = ”AG/345”)}
Q7: select distinct ?x where {?z ?y ?x . FILTER (?x = ”Needs to be reviewed”)}

Note that, in contrast to relational query languages, in SPARQL it is not possible
to return a constant that does not exist in the knowledge base. For instance, in SQL
we can say select “mystring” which will return an answer set containing only the value
‘‘mystring”. To achieve the same behavior in SPARQL, we need to have somehow the
string explicitly stored in the knowledge base. To overcome this limitation, in our im-
plementation we use a special class that stores as instances all the possible strings used
in the queries. Thus, any query that needs to return only one value, like Q7 above, will
indeed return the expected result. This is not a limitation of our approach, rather a way
to overcome an SPARQL restriction.

5 Supporting Intensional Attributes Functionality
To support the intensional attribute functionality in a way that is transparent to the end
user, we have investigated three main approaches that we describe next.

5.1 The Materialized Approach
The idea of the materialized approach is that all intensional attributes are materialized
as regular attributes. When a new intensional attribute 〈qd,m, qr〉 is introduced in the

8

[0
8:

16
05

-0
7-

20
09

]U
of

Tr
en

to
-D

o
N

O
T

D
is

tr
ib

ut
e

knowledge base, the queries qd and qr are evaluated generating the result sets SD and
SR. Then, for every member d in SD and for every member r in SR an attribute 〈d,m, r〉
is introduced in the knowledge base. Therefore, with the materialized approach, find-
ing the intensional attributes of a class or individual is reduced to finding its regular
attributes. When a new class/individual is introduced in the knowledge base, the system
needs to find whether it needs to be assigned one or more intensional attributes, (recall
the ability of the intensional attributes to be assigned to future data). To do this, the
system has to go through all the queries of the intensional attributes and evaluate them
in order to determine whether the class or individual is part of the answer set of any
of them. One possible optimization for this process is to use an indexing mechanism
similar to the one described in Section 5.3.

5.2 The Lazy Approach
The other extreme of the materialized approach is the lazy approach. According to it,
no materialization takes place and the systems keeps only the definitions of the inten-
sional attributes. This offers great space savings compared to the materialized approach.
Furthermore, insertion or deletion of data does not require any action.

The limitation of the lazy approach is its high cost during browsing and query an-
swering. The system can always find whether a class or an individual x has an inten-
sional attribute 〈qd,m, qr〉 by simply evaluating queries qd and qr and testing whether
x belongs to their answer set. Given a class or an individual x, to find its intensional
attributes the system has to evaluate all the queries of all the stored intensional attribute
definitions. This is the same process that the materialized approach had to perform
when some new data is inserted into the intensional base. However, assuming that up-
dates are not performed very often, we rather pay such a cost during data modification
than during browsing or query answering.

5.3 The Indexed Approach
To avoid the two extremes of the lazy and the materialized approach, we looked for a
method with a reasonable performance during query answering and a reduced cost in
terms of space. As a result, we developed the indexed approach. Its basic idea is that,
instead of fully materializing the intensional attributes as in the materialized approach,
we create special index structures that allow us to find the intensional attributes of a
given class/individual with a much lower cost than the one required when evaluating all
the queries in the lazy approach.

In this approach, we restrict our attention to the special class of queries consisting
of a set of attribute conditions. This class is equivalent to the select-project-join queries
in relational database systems which have been found to constitute a large portion of
those met in real application scenarios [7]. In what follows, we concentrate on select-
project queries for reasons of presentation. The addition of the join does not alter the
methodology or the results. Thus, we assume the indexed approach is used for queries
of the SPARQL form:

select ?o where {?o rdf:type c . Conds}
where c is a specific class (not a variable) and Conds is a series of conditions com-
bined by the “.” operator. Each condition in Conds is of the form: ?o attributeName

9

[0
8:

16
05

-0
7-

20
09

]U
of

Tr
en

to
-D

o
N

O
T

D
is

tr
ib

ut
e

DTable
Qd Name Qr
Q1 governedBy Q6
Q2 comment Q7
Q3 mustImplement Q4
Q5 mustImplement Q6
.

MTable
Q Max Cr
Q1 2 0
Q2 1 0
Q3 1 0
Q4 2 0
Q5 1 0
Q6 1 0
.

ETable
Attr Value Q
group EU Q2
hasURI “AG/345” Q6
hasURI “EMR” Q4
rdf:type Country Q1
rdf:type Country Q2
rdf:type Country Q3
rdf:type Country Q5
rdf:type Regulation Q4
.

ITable
Cond Q
population ≤ 00020 Q2

funding > 00010 Q5
funding > 00020 Q10
funding > 00100 Q12
funding < 00010 Q11
funding < 00050 Q10
funding < 00100 Q5

.

Fig. 4. DTable, MTable, ETable and ITable examples

?v . FILTER(?v〈OP 〉attributeV alue). The operator 〈OP 〉 can be one of the =, <, ≤,
> or ≥. The meaning of such a condition is that the class or individual o has an at-
tribute attributeName whose value is related to the attributeV alue as specified by
the 〈OP 〉 operator. For readability purposes, we will write conditions like the above as:
attributeName〈OP 〉attributeV alue.

The index consists of four tables: DTable, MTable, ETable, and the ITable. (Figure 4
illustrates the contents of the tables for the knowledge attributes in the intensional base
of Figure 2.) Note that their structure permits the implementation in both relational and
triple store systems. We explain their structures, roles and uses in the next paragraphs.

The DTable is a 3-column table used to record the list of the defined intensional
attributes. The first and last columns record the domain and range queries, respectively,
while the second one records the attribute names. More specifically, a tuple [qd,m, qr]
in DTable indicates the existence of an intensional attribute 〈qd,m, qr〉.

The MTable is also a 3-column table. It contains one entry for each query.
The first column of the table specifies the query. The second column is an inte-
ger and specifies the number of equality conditions, i.e., conditions of the form
attributeName=attributeV alue, that the respective query has. The use of the third
attribute will be described shortly. We require every query to have at least one equality
condition on the type. We explicitly add condition rdf:type=owl:Thing to any query with
no type condition. This guarantees at least one entry in the MTable for every query. Note,
for instance, that query Q2 has in the middle column the value 1, since the only equality
condition is the one on the type (The condition on the population is not an equality).

The ETable is the placeholder of the equality conditions of the queries in the inten-
sional attributes. It consists of three columns recording the attribute name, the value of
the equality condition, and the query name, respectively. (We assume that each query
used in the intensional base is assigned a unique-name identifier.) All three values are
stored as strings. Figure 4 contains an ETable for the queries in our running example.

Tables MTable and ETable need to be updated when intensional attributes are intro-
duced or removed from the system. When an intensional attribute 〈qd,m, qr〉 is intro-
duced, it is first inserted in table DTable, and then its queries qd and qr are analyzed.
For every equality condition cond they contain, a tuple [q, cond] is inserted in ETable,
where q is qd or qr. In addition, the tuples [qd, nd, 0] and [qr, nr, 0] are inserted in table
MTable, where nd and nr are integers indicating the number of equality conditions of
qd and qr, respectively. In the case of a deletion of an intensional attribute 〈qd,m, qr〉,

10

[0
8:

16
05

-0
7-

20
09

]U
of

Tr
en

to
-D

o
N

O
T

D
is

tr
ib

ut
e

the only action required is the removal from the tables DTable, MTable, and ETable of
any tuple referring to query qd and qr.

Assume now that the system needs to find the intensional attributes of a class or an
individual o. The system has first to find the queries that have o in their answer set. (To
simplify the presentation we will ignore for the moment the inequality conditions.) To
do so, all the values in the column Cr of MTable are initially set to 0. Then for each
non-intensional3 attribute attrName with value attrV alue, a lookup is performed on
table ETable for tuples containing values attrName and attrValue in columns Attr and
Value, respectively, and the Q column value of those tuples is retrieved. For each query
q in the retrieved set, the Cr value of the tuples in table MTable that have q in column Q
is increased by one. At the end of the process, the queries for which their MTable has the
same value in columns Max and Cr are those for which the non-intensional attributes
of o satisfy the query condition, thus o is in their answer set. Let Q be the set of such
queries, and let us call it the candidate set. The intensional attributes of o are those in
table DTable that have in column Qr or Qd a query that belongs in the candidate set Q.

Example 3. As an example of the described process, consider the index structures il-
lustrated in Figure 4, and the individual Canada of Figure 2. The specific individual
has four (attributes, value) pairs: rdf:type=Country, group=non-EU, funding=70M and
population=32M. A set of polling requests on ETable, one for each (attribute, value)
pair, shows that Q1, Q2, Q3 and Q5 satisfy rdf:type=Country (no other pair is satisfied).
Then, we increase by 1 the Cr column of the MTable for the tuples of the four queries
mentioned above. The result table MTable will be the one of Figure 4 with the tuples of
Q1, Q2, Q3 and Q5 having value 1 in column Cr. Among them only the Q2, Q3 and Q5
agree with the value in their respective column Max, which means that Canada satisfies
all equality conditions of Q2, Q3 and Q5, thus, it belongs in their answer set. It does not,
however, belong to the answer set of query Q1 since its Cr column value 1 is smaller
than its Max column value 2.

In the discussion so far we have considered only equality conditions. We see
next how inequality conditions, i.e., conditions involving > and <, are handled. Ta-
ble ITable serves that purpose. It consists of two columns. The first column (Cond)
is a column that contains the inequality conditions of every query used in the inten-
sional attributes. The second column specified the query in which this inequality con-
dition exists. If the same condition appears in more than one query, then the table
has multiple entries, one for each query in which it appears. The values in the col-
umn Cond are strings of a fixed 2N+1 character length used to record an inequal-
ity condition. The first N characters are used for the attribute name, the next char-
acter for the operator, and the last N for the value. If the attribute name is smaller
than N in length, it is padded with underscores or zeros, depending on whether it is
a string or a number. For instance, if N is 15, the string representation of the con-
dition population < 20 is “ population<000000000000020”. We will denote by
PD(attrName〈OP 〉attrV alue) the padded string representation of the condition
attrName〈OP 〉attrV alue. We will represent by MAX and MIN the two strings of
N characters each with the following property: each character of MAX has all its bits

3 The reason why only the non-intensional attributes are considered will be explained later

11

[0
8:

16
05

-0
7-

20
09

]U
of

Tr
en

to
-D

o
N

O
T

D
is

tr
ib

ut
e

to 1, and each character of MIN has all its bits to 0. This means that any compari-
son of an N-character string s to MAX will find s to be (lexicographically) smaller,
and any comparison to MIN will find it larger. When a query q has a condition of the
form attrName〈OP 〉attrV alue, then its padded string representation is entered in the
ITable along with the query q in the respective column. Given a class/individual o, the
ITable is used to provide the list of queries with an inequality condition that is not satis-
fied by o. If o has an attribute attrName with a value attrValue, then we search on ITable
for entries x that have Cond satisfying one of the following four specifications:

PD(attrName>attrValue) < x.Cond < PD(attrName>MAX)
PD(attrName≥attrValue) < x.Cond < PD(attrName≥MAX)
PD(attrName<MIN) < x.Cond < PD(attrName<attrValue)
PD(attrName≤MIN) < x.Cond < PD(attrName≤attrValue)

The queries found in this step are removed from the list of candidate queries Q
that was generated in the process of equality conditions described earlier. What fi-
nally remains is the set of queries for which all their conditions are satisfied by the
class/individual o that was inserted. Given these queries, one can find from the DTable
the intensional attributes of o.

Example 4. Consider again the index structures illustrated in Figure 4, and the individ-
ual Canada of Figure 2. The ITable contains the inequality conditions of all queries in
our intensional base example. From the equality process described in Example 3, we
obtained the list of candidate queries for Canada: Q2, Q3 and Q5. Now, we need to
eliminate from the candidate list those queries whose inequality conditions are not sat-
isfied by the attributes of Canada. Therefore, for each (attribute, value) pair in Canada
we create four requests to ITable, one for each range condition described above. For
instance, for funding=70M, we create the following requests:

“ funding>00070” < x.Cond < “ funding>99999”
“ funding≥00070” < x.Cond < “ funding≥99999”
“ funding<00000” < x.Cond < “ funding<00070”
“ funding≤00000” < x.Cond < “ funding≤00070”

where 00000 and 99999 are the MIN and MAX of strings of length 5, respectively.
The first request matches condition “ funding>00100” in ITable, which corresponds to
Q12. The third request matches conditions “ funding<00010” and “ funding<00050”,
which correspond to Q11 and Q10, respectively. (Since there are only strict inequal-
ity conditions in ITable, the second and fourth requests match no attribute). Thus, Q10,
Q11, and Q12 are queries whose inequality conditions are not satisfied and should be
removed from the candidate list. However, since they are not in the list, no actual action
is performed.

We repeat the same process for every attribute-value pair of Canada. When
we perform the polling for population=32M, the (“population≤00000” < x.Cond <
“population≤00032”) matches the condition “population≤00020” in ITable, resulting in
Q2 being removed from the candidate list. Since the candidate list at the end of the
process is Q3 and Q5, we conclude that the individual Canada is in the domain of the
intensional attributes: 〈Q3,mustImplement,Q4〉, and 〈Q5,mustImplement,Q6〉

12

[0
8:

16
05

-0
7-

20
09

]U
of

Tr
en

to
-D

o
N

O
T

D
is

tr
ib

ut
e

(a) (b)

Fig. 5. Running times for finding (a) and inserting (b) intensional attributes

An extreme case is the one involving queries that have absolutely no constraints, and
special consideration needs to be taken for them. Although we are taking care of such
situations, we expect that this kind of queries will be extremely rare, since they simply
assign an intensional attribute to every element that exists in the intensional base.

6 Experimental Evaluation
To evaluate the three implementation strategies, i.e., the lazy, the materialized and the
indexed, we have conducted a number of experiments. We have repeated each experi-
ment three times starting each time with a cold Java Virtual Machine (JVM). Our report
time is the average of these three independent runs. The experiments were carried on a
Windows XP machine powered by a 1.66 GHz CPU with 2 GB of RAM. The imple-
mentation utilizes the Protégé 3.3.1 plugin within the Eclipse environment. We used two
different backends: the AllegroGraph 3.1 triple store 4 for the classes and individuals,
and thus for the materialized implementation, and MySQL Server 5.0 5 for the tables
and the intensional definitions in the indexed and lazy implementations, respectively.

One of the basic operations we need to evaluate is the time required to find the
intensional attributes of a give class/individual. Figure 5(a) shows the time required for
this task for different sizes of the data. For this first set of experiments, we populated
the knowledge base with 100000 classes/individuals and we tested the performance of
our three approaches with three sets of intensional attributes: 10, 100 and 1000. The
conclusion of the experiments were that the lazy approach does not scale well since it
has to run the queries of all intensional attribute definitions, so the performance of this
approach heavily depends on the number of intensional attributes stored in the system.
In contrast, both materialized and indexed implementations have good performance
regardless of the number of intensional attributes. There are different reasons for this
in each optimized implementation. In the materialized approach, intensional attributes
are translated to regular attributes, so the time in the graph corresponds to just finding

4 http://agraph.franz.com/allegrograph
5 http://www.mysql.com

13

[0
8:

16
05

-0
7-

20
09

]U
of

Tr
en

to
-D

o
N

O
T

D
is

tr
ib

ut
e

the actual class/individual in the ontology storage. In the indexed approach, the time
corresponds to evaluating simple queries in tables DTable, MTable, ETable and ITable,
which are much smaller than the entire knowledge base. Note that the illustrated graphs
here are in logarithmic scale.

In contrast to finding the intensional attributes, the task of inserting a new
class/individual in the knowledge base has the opposite results, as shown in Figure 5(b).
For this set of experiments, we used a fix number of 1000 intensional attributes and
varied the number of classes/individuals in the knowledge base from 100 to 100000, as
shown on the x axis. Note that any class/individual may have any number of intensional
attribute definitions, hence the number of intensional definitions could be larger than the
number of classes/individuals in the system (which is the case for the knowledge base
of size 100 in the graph).

For an insertion using the materialized implementation, the times reported corre-
sponds to evaluating all queries of the intensional attributes in order to find which ones
to materialize in the new class/individual. This is essentially the same process the lazy
approach performs for finding the intensional attributes of a given class/individual. The
times reported for the insertion using the indexed implementation, on the other hand,
corresponds to updating the information of the DTable, MTable, ETable and ITable,
with the data of the queries in the new intensional attribute. Finally, the reported times
for the lazy approach correspond to storing the queries of the new intensional attribute
in the knowledge base, which requires just to store the intensional definition in the sys-
tem.

7 Related Work
The idea of using queries for intensional definitions is not new. Derived concepts in
Description Logics [4] are defined through logical expressions, i.e., queries. Derived
elements in UML are also defined with some sort of logical expressions, although
much simpler than those used in Description Logics. Virtual and materialized views in
database management systems also use queries to describe their contents [7]. Queries as
data values have been implemented in a number of commercial database systems such
as INGRESS [5] and Oracle [13]. They have also been studied in the context of rela-
tional algebra [6] and Meta-SQL [8]. There have been numerous proposals for metadata
management that include some kind of association between metadata and data, either
by relating individuals values [14], subsets of the attributes in a tuple [15], or XML data
with a complex structure [16]. The use of queries as data values for associating data and
metadata has been studied in [9], where the authors propose a unified mechanism for
modeling and querying across both data and metadata.

An ontology is a formal explicit description of concepts, or classes, in a domain of
discourse [1]. An ontology, along with a set of individual instances, constitutes a knowl-
edge base. In the context of the Semantic Web [17], ontologies are represented through
formalisms like RDF [2] and OWL [11], and queried with ontology query languages
such as SPARQL [12]. To the best of our knowledge, this is the first effort towards us-
ing queries to introduce intensional attributes in ontologies in order to tackle the issues
described in this work.

14

[0
8:

16
05

-0
7-

20
09

]U
of

Tr
en

to
-D

o
N

O
T

D
is

tr
ib

ut
e

8 Conclusion
We proposed an extension of the RDF and OWL formalisms with intensional attributes,
i.e., attributes that have no explicit specification for the classes or individuals they as-
sociate (the domain and range of the attributes are specified through intensional expres-
sions represented by queries). This work can be seen as an extension to attributes of the
notion of derived concepts in Description Logics. Intensional attributes offer flexibility,
great space and time savings, and can also be applied to future data. We investigated
possible implementations and proposed one that provides good performance and space
tradeoffs.

Acknowledgments: The current work has been partially supported by the EU grant
GA-215032 and ICT-215874.

References

1. Noy, N.F., McGuinness, D.L.: Ontology development 101: A guide to creating your first
ontology. Technical report, Stanford Knowledge Systems Laboratory KSL-01-05 (2001)

2. W3C: Resource description framework (RDF). http://www.w3.org/TR/rdf-concepts/ (2004)
3. W3C: RDF vocabulary description language 1.0: RDF Schema. http://www.w3.org/TR/rdf-

schema/ (2004)
4. Baader, F., Nutt, W.: Basic Description Logics. In: Description Logic Handbook. (2003)

43–95
5. Stonebraker, M., Anton, J., Hanson, E.N.: Extending a Database System with Procedures.

TODS 12(3) (1987) 350–376
6. Neven, F., Bussche, J.V., Gucht, D.V., Vossen, G.: Typed Query Languages for Databases

Containing Queries. In: PODS. (1998) 189–196
7. Lenzerini, M.: Data Integration: A Theoretical Perspective. In: PODS. (2002) 233–246
8. van den Bussche, J., Vansummeren, S., Vossen, G.: Towards practical meta-querying. Inf.

Syst. 30(4) (2005) 317–332
9. Srivastava, D., Velegrakis, Y.: Intensional Associations between Data and Metadata. In:

SIGMOD. (2007) 401–412
10. Borgida, A., Brachman, R.J.: Modeling with Description Logics. In: Description Logic

Handbook. (2003) 349–372
11. W3C: OWL web ontology language reference. http://www.w3.org/TR/owl-ref/ (2004)
12. W3C: SPARQL query language for RDF. http://www.w3.org/TR/rdf-sparql-query/ (2008)
13. Gawlick, D., Lenkov, D., Yalamanchi, A., Chernobrod, L.: Applications for Expression Data

in Relational Database System. In: ICDE. (2004) 609–620
14. Buneman, P., Khanna, S., Tan, W.C.: On propagation of deletions and annotations through

views. In: PODS, New York, NY, USA, ACM (2002) 150–158
15. Geerts, F., Kementsietsidis, A., Milano, D.: MONDRIAN: Annotating and querying

databases through colors and blocks. In: ICDE. (2006) 82
16. Bertino, E., Castano, S., Ferrari, E.: On specifying security policies for web documents with

an XML-based language. In: SACMAT. (2001) 57–65
17. W3C: Semantic web. http://www.w3.org/2001/sw/ (2008)

15

