Abstract
Many real-world problems are dynamic, requiring an optimization algorithm which is able to continuously track a changing optimum over time. This paper presents a new variant of Particle Swarm Optimization (PSO) specifically designed to work well in dynamic environments. The main idea is to divide the population of particles into a set of interacting swarms. These swarms interact locally by dynamic regrouping and dispersing. Cauchy mutation is applied to the global best particle when the swarm detects the environment of the change. The dynamic function (proposed by Morrison and De Jong) is used to test the performance of the proposed algorithm. The comparison of the numerical experimental results with those of other variant PSO illustrates that the proposed algorithm is an excellent alternative to track dynamically changing optima.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Parsopoulos, K., Vrahatis, M.: Recent approaches to global optimization problems through particle swarm optimization. Natural Comput. 1(2–3), 235–306 (2002)
Clerc, M., Kennedy, J.: The particle swarm—explosion, stability, and convergence in a multidimensional complex space. IEEE Transaction on Evolutionary Computation 6(1), 58–73 (2002)
Blackwell, T., Branke, J.: Multi-swarm optimization in dynamic environments. In: Raidl, G.R., Cagnoni, S., Branke, J., Corne, D.W., Drechsler, R., Jin, Y., Johnson, C.G., Machado, P., Marchiori, E., Rothlauf, F., Smith, G.D., Squillero, G. (eds.) EvoWorkshops 2004. LNCS, vol. 3005, pp. 489–500. Springer, Heidelberg (2004)
Jin, Y., Branke, J.: Evolutionary optimization in uncertain environments-a survey. IEEE Transactions on Evolutionary Computation 9(3), 303–317 (2005)
Carlisle, A., Dozier, G.: Adapting particle swarm optimization to dynamic environments. In: Proceedings of International Conference on Artificial Intelligence (ICAI 2000), Las Vegas, Nevada, USA, pp. 429–434 (2000)
Eberhart, R.C., Shi, Y.: Tracking and optimizing dynamic systems with particle swarms. In: Proceedings of the IEEE congress on Evolutionary Computation (CEC 2001), Seoul, Korea, pp. 94–97 (2001)
Hu, X., Eberhart, R.: Adaptive particle swarm optimization: Detection and response to dynamic systems. In: Proc. Congr. Evol. Comput., pp. 1666–1670 (2002)
Blackwell, T.M., Bentley, P.: Don’t push me! Collision-avoiding swarms. In: Proc. Congr. Evol. Comput., pp. 1691–1696 (2002)
Parrott, D., Li, X.: A particle swarm model for tracking multiple peaks in a dynamic environment using speciation. In: Proc. Congr. Evol. Comput., pp. 98–103 (2004)
Blackwell, T., Branke, J.: Multiswarms, Exclusion, and Anti-Convergence in Dynamic Environments. IEEE Transactions on Evolutionary Computation 10(4), 459–472 (2006)
Liang, J.J., Suganthan, P.N.: Dynamic Multi-Swarm Particle Swarm Optimizer. In: Proc. of IEEE Int. Swarm Intelligence Symposium, pp. 124–129 (2005)
Parrott, D., Li, X.: Adaptively choosing neighborhood bests using species in a particle swarm optimizer for multimodal function optimization. In: Deb, K., et al. (eds.) GECCO 2004. LNCS, vol. 3102, pp. 105–116. Springer, Heidelberg (2004)
Riget, J., Vestertrom, J.S.: A Diversity-Guided Particle Swarm Optimizer–the ARPSO, Technical Report No 2002-02, Dept. of Computer Science. University of Aarhus, EVALife (2002)
Morrison, R., De Jong, K.: A test problem generator for nonstationary environments. In: Proceedings of the 1999 Congress on Evolutionary Computation, 1999. CEC 1999, vol. 3, pp. 2047–2053 (1999)
Morrison, R.W.: Performance Measurement in Dynamic Environments. In: Barry, A.M. (ed.) Proc. GECCO 2003: Workshops, Genetic and Evolutionary ComputationConference, pp. 99–102. AAAI Press, Menlo Park (2003)
yao, X., Xu, Y.: Recent advances in evolutionary computation. J. computer. Sci.& technol. 21(11-18) (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hu, C., Wu, X., Wang, Y., Xie, F. (2009). Multi-swarm Particle Swarm Optimizer with Cauchy Mutation for Dynamic Optimization Problems. In: Cai, Z., Li, Z., Kang, Z., Liu, Y. (eds) Advances in Computation and Intelligence. ISICA 2009. Lecture Notes in Computer Science, vol 5821. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04843-2_47
Download citation
DOI: https://doi.org/10.1007/978-3-642-04843-2_47
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-04842-5
Online ISBN: 978-3-642-04843-2
eBook Packages: Computer ScienceComputer Science (R0)