Skip to main content

Incremental Learning of Triadic PLSA for Collaborative Filtering

  • Conference paper
Active Media Technology (AMT 2009)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 5820))

Included in the following conference series:

Abstract

PLSA which was originally introduced in text analysis area, has been extended to predict user ratings in the collaborative filtering context, known as Triadic PLSA (TPLSA). It is a promising recommender technique but the computational cost is a bottleneck for huge data set. We design a incremental learning scheme for TPLSA for collaborative filtering task that could make forced prediction and free prediction as well. Our incremental implementation is the first of its kind in the probabilistic model based collaborative filtering area, to our best knowledge. Its effectiveness is validated by experiments designed for both rating-based and ranking-based collaborative filtering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hofmann, T.: Unsupervised Learning by Probabilistic Latent Semantic Analysis. Maching Learning Journal 42(1-2), 177–196 (2001)

    Article  MATH  Google Scholar 

  2. Monay, F., Gatica-Perez, D.: PLSA-based Image Auto-Annotation: Constraining the Latent Space. In: Proceeding of ACM International Conference on Multimedia, pp. 348–351 (2004)

    Google Scholar 

  3. Papagelis, M., Rousidis, I., Plexousakis, D., et al.: Incremental Collaborative Filtering for Highly-Scalable Recommendation Algorithms. In: Hacid, M.-S., Murray, N.V., RaÅ›, Z.W., Tsumoto, S. (eds.) ISMIS 2005. LNCS (LNAI), vol. 3488, pp. 553–561. Springer, Heidelberg (2005)

    Google Scholar 

  4. Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Incremental singular value decomposition algorithms for highly scalable recommender systems. In: Proc. Fifth International Conference on Computer and Information Technology, pp. 399–404 (2002)

    Google Scholar 

  5. Bucak, S.S., Gunsel, B., Gursoy, O.: Incremental Non-Negative Matrix Factorization for Dynamic Background Modelling. In: Proceedings of PRIS, pp. 107–116 (2007)

    Google Scholar 

  6. Chou, T.C., Chen, M.C.: Using Incremental PLSA for Threshold Resilient Online Event Anlysis. IEEE TKDE 20(3), 289–299 (2008)

    Google Scholar 

  7. Hofmann, T.: Latent semantic models for collaborative filtering. ACM Trans. Inf. Syst. 22(1), 89–115 (2004)

    Article  Google Scholar 

  8. Zhang, L., Li, C., et al.: An Efficient Solution to Factor Drifting Problem in the PLSA Model. In: Proceedings of the The Fifth International Conference on Computer and Information Technology, pp. 175–181 (2005)

    Google Scholar 

  9. Chien, J.T., Wu, M.S.: Adaptive Bayesian Latent Semantic Analysis. IEEE Transactions on Audio, Speech, and Language Processing 16(1), 198–207 (2008)

    Article  Google Scholar 

  10. Marlin, B.: Collaborative filtering: A machine learning perspective. Master’s thesis, University of Toronto (2004)

    Google Scholar 

  11. Das, A., Datar, M., Garg, A., Rajaram, S.: Google News Personalization: Scalable Online Collaborative Filtering. In: Proc. of the 16th Int. Conf. on World Wide Web, pp. 271–280 (2007)

    Google Scholar 

  12. Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating Collaborative Filtering Recommender Systems. ACM Trans. Information Systems 22(1), 5–53 (2004)

    Article  Google Scholar 

  13. Wang, J., Robertson, S., De Vries, A.P., Reinders, M.J.T.: Probabilistic relevance ranking for collaborative filtering. Information Retrieval 11(6), 477–497 (2008)

    Article  Google Scholar 

  14. Zhou, T., Ren, J., Medo, M., Zhang, Y.: Bipartite network projection and personal recommendation. Physical Review E 76(4) (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wu, H., Wang, Y. (2009). Incremental Learning of Triadic PLSA for Collaborative Filtering. In: Liu, J., Wu, J., Yao, Y., Nishida, T. (eds) Active Media Technology. AMT 2009. Lecture Notes in Computer Science, vol 5820. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04875-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04875-3_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04874-6

  • Online ISBN: 978-3-642-04875-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics