Skip to main content

Axioms of Probability

  • Reference work entry
  • First Online:
International Encyclopedia of Statistical Science
  • 299 Accesses

Ingredients of Probability Spaces

Definition 1

A collection ℱ of subsets of a set Ω is called a ring on Ω if it satisfies the following conditions:

  1. 1.

    A, B ∈ ℱ ⇒ A ∪B ∈ ℱ,

  2. 2.

    A, B ∈ ℱ ⇒ A ∖ B ∈ ℱ.

A ring ℱ is called an algebra if Ω ∈ ℱ.

Definition 2

A ring ℱ on Ω is called a σ-ring if it satisfies the following additional condition:

  1. 3.

    For every countable family \({({A}_{n})}_{n\in \mathbb{N}}\) of subsets of ℱ: \({\bigcup \nolimits }_{n\in \mathbb{N}}{A}_{n} \in \mathcal{F}\).

A σ-ring ℱ on Ω is called a σ-algebra (or σ-field) if Ω ∈ ℱ.

Proposition 1

The following properties hold:

  1. 1.

    If ℱ is a σ-algebra of subsets of a set Ω, then it is an algebra.

  2. 2.

    If ℱ is a σ-algebra of subsets of Ω, then

    • For any countable family \({({E}_{n})}_{n\in \mathbb{N}\setminus \{0\}}\) of elements of ℱ: â‹‚ ∞ n = 1 E n ∈ ℱ,

    • For any finite family (E i )1 ≤ i ≤ n of elements of ℱ : â‹‚ n i = 1 E i ∈ ℱ,

    • B ∈ ℱ ⇒ Ω ∖ B ∈ ℱ.

Definition 3

Every pair (Ω, ℱ) consisting of a set Ω and a σ-ring ℱ of subsets of Ω is a mea...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,100.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References and Further Reading

  • Ash RB (1972) Real analysis and probability. Academic, London

    Google Scholar 

  • Bauer H (1981) Probability theory and elements of measure theory. Academic, London

    MATH  Google Scholar 

  • Billingsley P (1995) Probability and measure. Wiley, New York

    MATH  Google Scholar 

  • Breiman L (1968) Probability. Addison–Wesley, Reading, MA

    Google Scholar 

  • Chung KL (1974) A course in probability theory, 2nd edn. Academic, New York

    MATH  Google Scholar 

  • De Finetti B (1974–1975) Theory of probability, vols 1 and 2. Wiley, London

    Google Scholar 

  • Dudley RM (2002) Real analysis and probability. Cambridge Studies in Advanced Mathematics 74, Cambridge University Press, Cambridge

    Google Scholar 

  • Fristedt B, Gray L (1997) A modern approach to probability theory. Birkhäuser, Boston

    MATH  Google Scholar 

  • Kolmogorov AN (1956) Foundations of the theory of probability. Chelsea, New York

    MATH  Google Scholar 

  • Métivier M (1968) Notions fondamentales de la théorie des probabilités., Dunod, Paris

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Capasso, V. (2011). Axioms of Probability. In: Lovric, M. (eds) International Encyclopedia of Statistical Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04898-2_129

Download citation

Publish with us

Policies and ethics