Skip to main content

General Linear Models

  • Reference work entry
  • First Online:
International Encyclopedia of Statistical Science
  • 262 Accesses

Lety be a random variable such that E(y) = μ, or \(y = \mu + \epsilon \), where ε is a random error with E(ε) = 0. Suppose that \(\mu = {x}_{1}{\beta }_{1} + \cdots + {x}_{p}{\beta }_{p}\), where x 1, …, x p are p variables and β1, …, β p are p unknown parameters. The model

$$ y = {x}_{1}{\beta }_{1} + \cdots + {x}_{p}{\beta }_{p} + \epsilon , $$
(1)

is the well-known multiple linear regression model (see Linear Regression Models). Here y is called dependent (or response) variable, x 1, …, x p are called independent (or explanatory) variables or regressors, and β1, …, β p are called regression coefficients. Letting

$$({y}_{1},{x}_{11},\ldots ,{x}_{1p}),\ldots ,({y}_{n},{x}_{n1},\ldots ,{x}_{np})$$

be a sequence of the observations of Y and x 1, …, x p , we have

$$ {y}_{i} = {x}_{i1}{\beta }_{1} + \cdots + {x}_{ip}{\beta }_{p} + {\epsilon }_{i},\quad i = 1,\ldots ,n, $$
(2)

where ε1, …, ε n are the corresponding random errors. Denote y n = (y 1, …, y n )T, X n = (x 1, …, x ...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,100.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References and Further Reading

  • Draper NR, Smith H (1998) Applied regression analysis, 3rd edn. Wiley, New York

    MATH  Google Scholar 

  • Fang KT, Zhang YT (1990) Generalized multivariate analysis. Springer/Science Press, Berlin/Beijing

    MATH  Google Scholar 

  • Gauss CF (1809) Least squares. Werke 4:1–93, Göttingen

    Google Scholar 

  • Mardia KV, Kent JT, Bibby JM (1979) Multivariate analysis. Academic, London

    MATH  Google Scholar 

  • Markov AA (1900) Ischislenie veroyatnostej, SPb

    Google Scholar 

  • Muirhead RJ (1982) Aspects Of multivariate statistical theory. Wiley, New York

    MATH  Google Scholar 

  • Rao CR (1973) Linear statistical inference and applications. Wiley, New York

    MATH  Google Scholar 

  • Rao CR, Toutenburg H, Shalabh C, Heumann C (2008) Linear models and generalizations. Least squares and alternatives. 3rd edn. Springer, Berlin/Heidelberg

    Google Scholar 

  • Seber GAF, Lee AJ (2003) Linear regression analysis. 2nd edn. Wiley, New York

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Wu, Y. (2011). General Linear Models. In: Lovric, M. (eds) International Encyclopedia of Statistical Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04898-2_277

Download citation

Publish with us

Policies and ethics