Skip to main content

Moderate Deviations

  • Reference work entry
  • First Online:
International Encyclopedia of Statistical Science

Moderate Deviations

Consider the familiar simple set up for the central limit theorem (CLT, see Central Limit Theorems). Let \({X}_{1},{X}_{2},\ldots \) be independently and identically distributed real random variables with common distribution function F(x). Let \({Y }_{n}\,=\, \frac{1} {n}({X}_{1} + \cdots + {X}_{n}),n\,=\,1,2,\ldots \). Suppose that

$$ \int \nolimits \nolimits xF(dx) = 0,\int \nolimits \nolimits {x}^{2}F(dx) = l $$
(1)

Then the central limit theorem states that

$$P\left (\vert {Y }_{n}\vert > \frac{a} {\sqrt{n}}\right ) \rightarrow 2[1 - \Phi (a)]$$
(2)

where \(\Phi (x) = \frac{1} {\sqrt{2\pi }}{ \int \nolimits \nolimits }_{-\infty }^{x}\exp (-{t}^{2}/2)dt\) and a > 0.

In other words, the CLT gives an approximation to the two-sided deviation of size \(\frac{a} {\sqrt{n}}\) of Y n and the approximation is a number in (1 / 2, 1). Deviations of the this type are called ordinary deviations.

However, one needs to study deviations larger than ordinary deviations to...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,100.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References and Further Reading

  • Borovkov AA, Mogulskii AA (1978) Probabilities of large deviations in topological vector space I. Siberian Math J 19:697–709

    MathSciNet  Google Scholar 

  • Borovkov AA, Mogulskii AA (1980) Probabilities of large deviations in topological vector space II. Siberian Math J 21:12–26

    MATH  MathSciNet  Google Scholar 

  • Cramér H (1938) Sur un nouveau théorème limite de la probabilités. Actualites Sci Indust 736:5–23

    Google Scholar 

  • Davis AD (1968) Convergence rates for probabilities of moderate deviations. Ann Math Statist 39:2016–2028

    MATH  MathSciNet  Google Scholar 

  • De Acosta A (1992) Moderate deviations and associated Laplace approximations for sums of independent random vectors. Trans Am Math Soc 329:357–375

    MATH  Google Scholar 

  • Dembo A (1996) Moderate deviations for martingales with bounded jumps. Elec Comm Probab 1:11–17

    MATH  MathSciNet  Google Scholar 

  • Deo CM, Babu JG (1981) Probabilities of moderate deviations in a Banach space. Proc Am Math Soc 24:392–397

    MathSciNet  Google Scholar 

  • Djellout H, Guillin A (2001) Moderate deviations for Markov chains with atom. Stoch Proc Appl 95:203–217

    MATH  MathSciNet  Google Scholar 

  • Gao FQ (2003) Moderate deviations and large deviations for kernel density estimators. J Theo Probab 16:401–418

    MATH  Google Scholar 

  • Ghosh M (1974) Probabilities of moderate deviations underm-dependence. Canad J Statist 2:157–168

    MATH  MathSciNet  Google Scholar 

  • Gut A (1980) Convergence rates for probabilities of moderate deviations for sums of random variables with multidimensional indices. Ann Probab 8:298–313

    MATH  MathSciNet  Google Scholar 

  • Liming W (1995) Moderate deviations of dependent random variables related to CLT. Ann Probab 23:420–445

    MATH  MathSciNet  Google Scholar 

  • Michel R (1974) Results on probabilities of moderate deviations. Ann Probab 2:349–353

    MATH  Google Scholar 

  • Rubin H, Sethuraman J (1965a) Probabilities of moderate deviations. Sankhya Ser A 27:325–346

    MATH  MathSciNet  Google Scholar 

  • Rubin H, Sethuraman J (1965b) Bayes risk efficiency. Sankhya Ser A 27:347–356

    MATH  MathSciNet  Google Scholar 

  • Slastnikov AD (1978) Limit theorems for moderate deviation probabilities. Theory Probab Appl 23:322–340

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Sethuraman, J., O., R. (2011). Moderate Deviations. In: Lovric, M. (eds) International Encyclopedia of Statistical Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04898-2_374

Download citation

Publish with us

Policies and ethics