Skip to main content

Multivariate Techniques: Robustness

  • Reference work entry
  • First Online:
International Encyclopedia of Statistical Science
  • 170 Accesses

The usual multivariate analysis techniques include location and scatter estimation, principal component analysis, factor analysis (see Factor Analysis and Latent Variable Modelling), discriminant analysis (see Discriminant Analysis: An Overview, and Discriminant Analysis: Issues and Problems), canonical correlation analysis, multiple regression and cluster analysis (see Cluster Analysis: An Introduction). These methods all try to describe and discover structure in the data, and thus rely on the correlation structure between the variables. Classical procedures typically assume normality (i.e. gaussianity) and consequently use the sample mean and sample covariance matrix to estimate the true underlying model parameters.

Below are three examples of multivariate settings used to analyze a data set with n objects and p variables, forming an n ×p data matrix \(X = ({x}_{1},\ldots ,{x}_{n})'\) with \({x}_{i} = ({x}_{i1},\ldots ,{x}_{ip})'\) the ith observation.

  1. 1....

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,100.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References and Further Reading

  • Agulló J, Croux C, Van Aelst S (2008) The multivariate least trimmed squares estimator. J Multivariate Anal 99:311–318

    MATH  MathSciNet  Google Scholar 

  • Boente G, Pires AM, Rodrigues I (2006) General projection-pursuit estimates for the common principal components model: Influence functions and Monte Carlo study. J Multivariate Anal 97:124–147

    MATH  MathSciNet  Google Scholar 

  • Branco JA, Croux C, Filzmoser P, Oliviera MR (2005) Robust canonical correlations: a comparative study. Comput Stat 20:203–229

    MATH  Google Scholar 

  • Brys G, Hubert M, Rousseeuw PJ (2005) A robustification of independent component analysis. J Chemometr 19:364–375

    Google Scholar 

  • Croux C, Dehon C (2001) Robust linear discriminant analysis using S-estimators. Can J Stat 29:473–492

    MATH  MathSciNet  Google Scholar 

  • Croux C, Dehon C (2002) Analyse canonique basée sur des estimateurs robustes de la matrice de covariance. La Revue de Statistique Appliquée 2:5–26

    Google Scholar 

  • Croux C, Haesbroeck G (1999) Influence function and efficiency of the minimum covariance determinant scatter matrix estimator. J Multivariate Anal 71:161–190

    MATH  MathSciNet  Google Scholar 

  • Croux C, Haesbroeck G (2000) Principal components analysis based on robust estimators of the covariance or correlation matrix: influence functions and efficiencies. Biometrika 87:603–618

    MATH  MathSciNet  Google Scholar 

  • Croux C, Ruiz-Gazen A (2005) High breakdown estimators for principal components: the projection-pursuit approach revisited. J Multivariate Anal 95:206–226

    MATH  MathSciNet  Google Scholar 

  • Debruyne M, Hubert M (2009) The influence function of the Stahel-Donoho covariance estimator of smallest outlyingness. Stat Probab Lett 79:275–282

    MATH  MathSciNet  Google Scholar 

  • Donoho DL, Huber PJ (1983) The notion of breakdown point. In: Bickel P, Doksum K, Hodges JL (eds) A Festschrift for Erich Lehmann. Wadsworth, Belmont, pp 157–184

    Google Scholar 

  • Hampel FR, Ronchetti EM, Rousseeuw PJ, Stahel WA (1986) Robust statistics: the approach based on influence functions. Wiley-Interscience, New York

    MATH  Google Scholar 

  • Hardin J, Rocke DM (2004) Outlier detection in the multiple cluster setting using the minimum covariance determinant estimator. Comput Stat Data Anal 44:625–638

    MathSciNet  Google Scholar 

  • Hawkins DM, McLachlan GJ (1997) High-breakdown linear discriminant analysis. J Am Stat Assoc 92:136–143

    MATH  MathSciNet  Google Scholar 

  • Hubert M, Debruyne M (2010) Minimum covariance determinant. Wiley Interdisciplinary Rev Comput Stat 2:36–43

    Google Scholar 

  • Hubert M, Van der Veeken S (2008) Outlier detection for skewed data. J Chemometr 22:235–246

    Google Scholar 

  • Hubert M, Van Driessen K (2004) Fast and robust discriminant analysis. Comput Stat Data Anal 45:301–320

    MATH  Google Scholar 

  • Hubert M, Vanden Branden K (2003) Robust methods for partial least squares regression. J Chemometr 17:537–549

    Google Scholar 

  • Hubert M, Verboven S (2003) A robust PCR method for high-dimensional regressors. J Chemometr 17:438–452

    Google Scholar 

  • Hubert M, Rousseeuw PJ, Verboven S (2002) A fast robust method for principal components with applications to chemometrics. Chemomet Intell Lab 60:101–111

    Google Scholar 

  • Hubert M, Rousseeuw PJ, Vanden Branden K (2005) ROBPCA: a new approach to robust principal components analysis. Technometrics 47:64–79

    MathSciNet  Google Scholar 

  • Hubert M, Rousseeuw PJ, Van Aelst S (2008) High breakdown robust multivariate methods. Stat Sci 23:92–119

    Google Scholar 

  • Li G, Chen Z (1985) Projection-pursuit approach to robust dispersion matrices and principal components: primary theory and Monte Carlo. J Am Stat Assoc 80:759–766

    MATH  Google Scholar 

  • Maronna RA, Yohai VJ (1995) The behavior of the Stahel-Donoho robust multivariate estimator. J Am Stat Assoc 90:330–341

    MATH  MathSciNet  Google Scholar 

  • Pires AM (2003) Robust discriminant analysis and the projection pursuit approach: practical aspects. In: Dutter R, Filzmoser P, Gather U, Rousseeuw PJ (eds) Developments in robust statistics. Physika Verlag, Heidelberg, pp 317–329

    Google Scholar 

  • Pison G, Rousseeuw PJ, Filzmoser P, Croux C (2003) Robust factor analysis. J Multivariate Anal 84:145–172

    MATH  MathSciNet  Google Scholar 

  • Rousseeuw PJ, Yohai V (1984) Robust regression based on S-estimators. In: Franke J, Haerdle W, Martin RD (eds) Robust and Nonlinear Time Series Analysis. Lecture Notes in Statistics No. 26, Springer Verlag, New York, pp 256–272

    Google Scholar 

  • Rousseeuw PJ (1984) Least median of squares regression. J Am Stat Assoc 79:871–880

    MATH  MathSciNet  Google Scholar 

  • Rousseeuw PJ, Yohai AM (1987) Robust regression and outlier detection. Wiley-Interscience, New York

    MATH  Google Scholar 

  • Rousseeuw PJ, Van Driessen K (1999) A fast algorithm for the minimum covariance determinant estimator. Technometrics 41:212–223

    Google Scholar 

  • Rousseeuw PJ, Van Driessen K (2006) Computing LTS regression for large data sets. Data Min Knowl Disc 12:29–45

    MathSciNet  Google Scholar 

  • Rousseeuw PJ, Van Aelst S, Van Driessen K, Agulló J (2004) Robust multivariate regression. Technometrics 46:293–305

    MathSciNet  Google Scholar 

  • Salibian-Barrera M, Van Aelst S, Willems G (2006) PCA based on multivariate MM-estimators with fast and robust bootstrap. J Am Stat Assoc 101:1198–1211

    MATH  Google Scholar 

  • Vanden Branden K, Hubert M (2005) Robust classification in high dimensions based on the SIMCA method. Chemometr Intell Lab 79:10–21

    Google Scholar 

  • Willems G, Pison G, Rousseeuw PJ, Van Aelst S (2002) A robust Hotelling test. Metrika 55:125–138

    MathSciNet  Google Scholar 

  • Yohai VJ (1987) High breakdown point and high efficiency robust estimates for regression. Ann Stat 15:642–656

    MATH  MathSciNet  Google Scholar 

  • Zuo Y, Cui H, He X (2004) On the Stahel-Donoho estimator and depth-weighted means of multivariate data. Annals Stat 32:167–188

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Hubert, M., Rousseeuw, P.J. (2011). Multivariate Techniques: Robustness. In: Lovric, M. (eds) International Encyclopedia of Statistical Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04898-2_401

Download citation

Publish with us

Policies and ethics