Abstract
Iterated local search is a stochastic local search (SLS) method that combines a perturbation step with an embedded local search algorithm. In this article, we propose a new way of hybridizing iterated local search. It consists in using an iterated local search as the embedded local search algorithm inside another iterated local search. This nesting of local searches and iterated local searches can be further iterated, leading to a hierarchy of iterated local searches. In this paper, we experimentally examine this idea applying it to the quadratic assignment problem. Experimental results on large, structured instances show that the hierarchical iterated local search can offer advantages over using a “flat” iterated local search and make it a promising technique to be further considered for other applications.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Hoos, H.H., Stützle, T.: Stochastic Local Search—Foundations and Applications. Morgan Kaufmann Publishers, San Francisco (2005)
Lourenço, H.R., Martin, O., Stützle, T.: Iterated local search. In: Glover, F., Kochenberger, G. (eds.) Handbook of Metaheuristics, pp. 321–353. Kluwer Academic Publishers, Norwell (2002)
Call for Papers: HM2009: 6th International Workshop on Hybrid Metaheuristics (2009), http://www.diegm.uniud.it/hm2009/
Smyth, K., Hoos, H.H., Stützle, T.: Iterated robust tabu search for MAX-SAT. In: Xiang, Y., Chaib-draa, B. (eds.) Canadian AI 2003. LNCS (LNAI), vol. 2671, pp. 129–144. Springer, Heidelberg (2003)
Cordeau, J.-F., Laporte, G., Pasin, F.: Iterated tabu search for the car sequencing problem. European Journal of Operational Research 191(3), 945–956 (2008)
Misevicius, A.: Using iterated tabu search for the traveling salesman problem. Information Technology and Control 32(3), 29–40 (2004)
Misevicius, A., Lenkevicius, A., Rubliauskas, D.: Iterated tabu search: an improvement to standard tabu search. Information Technology and Control 35(3), 187–197 (2006)
Lozano, M., García-Martínez, C.: An evolutionary ILS-perturbation technique. In: Blesa, M.J., Blum, C., Cotta, C., Fernández, A.J., Gallardo, J.E., Roli, A., Sampels, M. (eds.) HM 2008. LNCS, vol. 5296, pp. 1–15. Springer, Heidelberg (2008)
Essafi, I., Mati, Y., Dauzère-Pèréz, S.: A genetic local search algorithm for minimizing total weighted tardiness in the job-shop scheduling problem. Computers & Operations Research 35(8), 2599–2616 (2008)
Sahni, S., Gonzalez, T.: P-complete approximation problems. Journal of the ACM 23(3), 555–565 (1976)
Burkard, R.E., Çela, E., Pardalos, P.M., Pitsoulis, L.S.: The quadratic assignment problem. In: Pardalos, P.M., Du, D.Z. (eds.) Handbook of Combinatorial Optimization, vol. 2, pp. 241–338. Kluwer Academic Publishers, Dordrecht (1998)
Çela, E.: The Quadratic Assignment Problem: Theory and Algorithms. Kluwer Academic Publishers, Dordrecht (1998)
Stützle, T.: Iterated local search for the quadratic assignment problem. European Journal of Operational Research 174(1), 1519–1539 (2006)
Hansen, P., Mladenović, N.: Variable neighborhood search: Principles and applications. European Journal of Operational Research 130(3), 449–467 (2001)
Stützle, T., Fernandes, S.: New benchmark instances for the QAP and the experimental analysis of algorithms. In: Gottlieb, J., Raidl, G.R. (eds.) EvoCOP 2004. LNCS, vol. 3004, pp. 199–209. Springer, Heidelberg (2004)
Taillard, É.D.: Comparison of iterative searches for the quadratic assignment problem. Location Science 3(2), 87–105 (1995)
Taillard, É.D.: Robust taboo search for the quadratic assignment problem. Parallel Computing 17(4–5), 443–455 (1991)
Birattari, M., Stützle, T., Paquete, L., Varrentrapp, K.: A racing algorithm for configuring metaheuristics. In: Langdon, W.B., et al. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2002), pp. 11–18. Morgan Kaufmann Publishers, San Francisco (2002)
Drezner, Z., Hahn, P., Taillard, É.D.: A study of quadratic assignment problem instances that are difficult for meta-heuristic methods. Annals of Operations Research 174, 65–94 (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hussin, M.S., Stützle, T. (2009). Hierarchical Iterated Local Search for the Quadratic Assignment Problem. In: Blesa, M.J., Blum, C., Di Gaspero, L., Roli, A., Sampels, M., Schaerf, A. (eds) Hybrid Metaheuristics. HM 2009. Lecture Notes in Computer Science, vol 5818. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04918-7_9
Download citation
DOI: https://doi.org/10.1007/978-3-642-04918-7_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-04917-0
Online ISBN: 978-3-642-04918-7
eBook Packages: Computer ScienceComputer Science (R0)