Abstract
The tractability of neural-network approximation is investigated. The dependence of worst-case errors on the number of variables is studied. Estimates for Gaussian radial-basis-function and perceptron networks are derived.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Traub, J.F., Werschulz, A.G.: Complexity and Information. Cambridge University Press, Cambridge (1999)
Wasilkowski, G.W., Woźniakowski, H.: Complexity of weighted approximation over \(\Re^d\). J. of Complexity 17, 722–740 (2001)
Woźniakowski, H.: Tractability and strong tractability of linear multivariate problems. J. of Complexity 10, 96–128 (1994)
Mhaskar, H.N.: On the tractability of multivariate integration and approximation by neural networks. J. of Complexity 20, 561–590 (2004)
Kainen, P.C., Kůrková, V., Sanguineti, M.: Complexity of Gaussian radial basis networks approximating smooth functions. J. of Complexity 25, 63–74 (2009)
Barron, A.R.: Universal approximation bounds for superpositions of a sigmoidal function. IEEE Transactions on Information Theory 39, 930–945 (1993)
Knuth, D.E.: Big omicron and big omega and big theta. SIGACT News 8(2), 18–24 (1976)
Bellman, R.: Dynamic Programming. Princeton University Press, Princeton (1957)
Kainen, P.C., Kůrková, V., Vogt, A.: A Sobolev-type upper bound for rates of approximation by linear combinations of Heaviside plane waves. J. of Approximation Theory 147, 1–10 (2007)
Kůrková, V., Savický, P., Hlaváčková, K.: Representations and rates of approximation of real–valued Boolean functions by neural networks. Neural Networks 11, 651–659 (1998)
Beliczynski, B., Ribeiro, B.: Several enhancements to hermite-based approximation of one-variable functions. In: Kůrková, V., Neruda, R., Koutník, J. (eds.) ICANN 2008, Part I. LNCS, vol. 5163, pp. 11–20. Springer, Heidelberg (2008)
Barron, A.R.: Neural net approximation. In: Narendra, K. (ed.) Proc. 7th Yale Workshop on Adaptive and Learning Systems, pp. 69–72. Yale University Press (1992)
Breiman, L.: Hinging hyperplanes for regression, classification and function approximation. IEEE Transactions on Information Theory 39, 999–1013 (1993)
Darken, C., Donahue, M., Gurvits, L., Sontag, E.: Rate of approximation results motivated by robust neural network learning. In: Proceedings of the Sixth Annual ACM Conference on Computational Learning Theory, pp. 303–309. The Association for Computing Machinery, New York (1993)
Jones, L.K.: A simple lemma on greedy approximation in Hilbert space and convergence rates for projection pursuit regression and neural network training. Annals of Statistics 20, 608–613 (1992)
Pisier, G.: Remarques sur un résultat non publié de B. Maurey. In: Séminaire d’Analyse Fonctionnelle 1980-1981, École Polytechnique, Centre de Mathématiques, Palaiseau, France, vol. I(12)
Gurvits, L., Koiran, P.: Approximation and learning of convex superpositions. J. of Computer and System Sciences 55, 161–170 (1997)
Kůrková, V.: Dimension-independent rates of approximation by neural networks. In: Warwick, K., Kárný, M. (eds.) Computer-Intensive Methods in Control and Signal Processing. The Curse of Dimensionality, pp. 261–270. Birkhäuser, Basel (1997)
Kolmogorov, A.N., Fomin, S.V.: Introductory Real Analysis. Dover Publications Inc. (1970)
Kůrková, V., Sanguineti, M.: Error estimates for approximate optimization by the extended Ritz method. SIAM J. on Optimization 15, 461–487 (2005)
Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton (1970)
Courant, R.: Differential and Integral Calculus, vol. II. Wiley-Interscience, Hoboken (1988)
Kainen, P.C.: Utilizing geometric anomalies of high dimension: When complexity makes computation easier. In: Warwick, K., Kárný, M. (eds.) Computer-Intensive Methods in Control and Signal Processing. The Curse of Dimensionality, pp. 283–294. Birkhäuser, Basel (1997)
Kůrková, V., Kainen, P.C., Kreinovich, V.: Estimates of the number of hidden units and variation with respect to half-spaces. Neural Networks 10, 1061–1068 (1997)
Narcowich, F.J., Ward, J.D., Wendland, H.: Sobolev error estimates and a Bernstein inequality for scattered data interpolation via radial basis functions. Constructive Approximation 24, 175–186 (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kainen, P.C., Kůrková, V., Sanguineti, M. (2009). On Tractability of Neural-Network Approximation. In: Kolehmainen, M., Toivanen, P., Beliczynski, B. (eds) Adaptive and Natural Computing Algorithms. ICANNGA 2009. Lecture Notes in Computer Science, vol 5495. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04921-7_2
Download citation
DOI: https://doi.org/10.1007/978-3-642-04921-7_2
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-04920-0
Online ISBN: 978-3-642-04921-7
eBook Packages: Computer ScienceComputer Science (R0)