Skip to main content

On Fuzzy vs. Metric Similarity Search in Complex Databases

  • Conference paper
Flexible Query Answering Systems (FQAS 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5822))

Included in the following conference series:

  • 773 Accesses

Abstract

The task of similarity search is widely used in various areas of computing, including multimedia databases, data mining, bioinformatics, social networks, etc. For a long time, the database-oriented applications of similarity search employed the definition of similarity restricted to metric distances. Due to the metric postulates (reflexivity, non-negativity, symmetry and triangle inequality), a metric similarity allows to build a metric index above the database which can be subsequently used for efficient (fast) similarity search. On the other hand, the metric postulates limit the domain experts (providers of the similarity measure) in similarity modeling. In this paper we propose an alternative non-metric method of indexing for efficient similarity search. The requirement on metric is replaced by the requirement on fuzzy similarity satisfying the transitivity property with a tuneable fuzzy conjunctor. We also show a duality between the fuzzy approach and the metric one.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Zezula, P., Amato, G., Dohnal, V., Batko, M.: Similarity Search: The Metric Space Approach (Advances in Database Systems). Springer, Heidelberg (2005)

    Google Scholar 

  2. Samet, H.: Foundations of Multidimensional and Metric Data Structures (The Morgan Kaufmann Series in Computer Graphics and Geometric Modeling). Morgan Kaufmann Publishers Inc., San Francisco (2005)

    Google Scholar 

  3. Mico, M.L., Oncina, J., Vidal, E.: A new version of the nearest-neighbour approximating and eliminating search algorithm (aesa) with linear preprocessing time and memory requirements. Pattern Recogn. Lett. 15(1), 9–17 (1994)

    Article  Google Scholar 

  4. Krumhansl, C.L.: Concerning the applicability of geometric models to similar data: The interrelationship between similarity and spatial density. Psychological Review 85(5), 445–463 (1978)

    Article  Google Scholar 

  5. Tversky, A.: Features of similarity. Psychological review 84(4), 327–352 (1977)

    Article  Google Scholar 

  6. Rosch, E.: Cognitive reference points. Cognitive Psychology 7, 532–547 (1975)

    Article  Google Scholar 

  7. Rothkopf, E.: A measure of stimulus similarity and errors in some paired-associate learning tasks. J. of Experimental Psychology 53(2), 94–101 (1957)

    Article  Google Scholar 

  8. Ashby, F., Perrin, N.: Toward a unified theory of similarity and recognition. Psychological Review 95(1), 124–150 (1988)

    Article  Google Scholar 

  9. Tversky, A., Gati, I.: Similarity, separability, and the triangle inequality. Psychological Review 89(2), 123–154 (1982)

    Article  Google Scholar 

  10. Skopal, T.: Unified framework for fast exact and approximate search in dissimilarity spaces. ACM Trans. Database Syst. 32(4), 29 (2007)

    Article  Google Scholar 

  11. Skopal, T.: On fast non-metric similarity search by metric access methods. In: Ioannidis, Y., Scholl, M.H., Schmidt, J.W., Matthes, F., Hatzopoulos, M., Böhm, K., Kemper, A., Grust, T., Böhm, C. (eds.) EDBT 2006. LNCS, vol. 3896, pp. 718–736. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  12. Pękalska, E., Harol, A., Duin, R., Spillman, D., Bunke, H.: Non-euclidean or non-metric measures can be informative. In: Yeung, D.-Y., Kwok, J.T., Fred, A., Roli, F., de Ridder, D. (eds.) SSPR 2006 and SPR 2006. LNCS, vol. 4109, pp. 871–880. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  13. Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms. Trends in Logic, vol. 8. Kluwer Academic Publishers, Dordrecht (2000)

    MATH  Google Scholar 

  14. Pokorný, J., Vojtás, P.: A data model for flexible querying. In: Caplinskas, A., Eder, J. (eds.) ADBIS 2001. LNCS, vol. 2151, pp. 280–293. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  15. Skopal, T., Lokoč, J.: NM-tree: Flexible approximate similarity search in metric and non-metric spaces. In: Bhowmick, S.S., Küng, J., Wagner, R. (eds.) DEXA 2008. LNCS, vol. 5181, pp. 312–325. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Eckhardt, A., Skopal, T., Vojtáš, P. (2009). On Fuzzy vs. Metric Similarity Search in Complex Databases. In: Andreasen, T., Yager, R.R., Bulskov, H., Christiansen, H., Larsen, H.L. (eds) Flexible Query Answering Systems. FQAS 2009. Lecture Notes in Computer Science(), vol 5822. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04957-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04957-6_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04956-9

  • Online ISBN: 978-3-642-04957-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics