Abstract
The task of similarity search is widely used in various areas of computing, including multimedia databases, data mining, bioinformatics, social networks, etc. For a long time, the database-oriented applications of similarity search employed the definition of similarity restricted to metric distances. Due to the metric postulates (reflexivity, non-negativity, symmetry and triangle inequality), a metric similarity allows to build a metric index above the database which can be subsequently used for efficient (fast) similarity search. On the other hand, the metric postulates limit the domain experts (providers of the similarity measure) in similarity modeling. In this paper we propose an alternative non-metric method of indexing for efficient similarity search. The requirement on metric is replaced by the requirement on fuzzy similarity satisfying the transitivity property with a tuneable fuzzy conjunctor. We also show a duality between the fuzzy approach and the metric one.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Zezula, P., Amato, G., Dohnal, V., Batko, M.: Similarity Search: The Metric Space Approach (Advances in Database Systems). Springer, Heidelberg (2005)
Samet, H.: Foundations of Multidimensional and Metric Data Structures (The Morgan Kaufmann Series in Computer Graphics and Geometric Modeling). Morgan Kaufmann Publishers Inc., San Francisco (2005)
Mico, M.L., Oncina, J., Vidal, E.: A new version of the nearest-neighbour approximating and eliminating search algorithm (aesa) with linear preprocessing time and memory requirements. Pattern Recogn. Lett. 15(1), 9–17 (1994)
Krumhansl, C.L.: Concerning the applicability of geometric models to similar data: The interrelationship between similarity and spatial density. Psychological Review 85(5), 445–463 (1978)
Tversky, A.: Features of similarity. Psychological review 84(4), 327–352 (1977)
Rosch, E.: Cognitive reference points. Cognitive Psychology 7, 532–547 (1975)
Rothkopf, E.: A measure of stimulus similarity and errors in some paired-associate learning tasks. J. of Experimental Psychology 53(2), 94–101 (1957)
Ashby, F., Perrin, N.: Toward a unified theory of similarity and recognition. Psychological Review 95(1), 124–150 (1988)
Tversky, A., Gati, I.: Similarity, separability, and the triangle inequality. Psychological Review 89(2), 123–154 (1982)
Skopal, T.: Unified framework for fast exact and approximate search in dissimilarity spaces. ACM Trans. Database Syst. 32(4), 29 (2007)
Skopal, T.: On fast non-metric similarity search by metric access methods. In: Ioannidis, Y., Scholl, M.H., Schmidt, J.W., Matthes, F., Hatzopoulos, M., Böhm, K., Kemper, A., Grust, T., Böhm, C. (eds.) EDBT 2006. LNCS, vol. 3896, pp. 718–736. Springer, Heidelberg (2006)
Pękalska, E., Harol, A., Duin, R., Spillman, D., Bunke, H.: Non-euclidean or non-metric measures can be informative. In: Yeung, D.-Y., Kwok, J.T., Fred, A., Roli, F., de Ridder, D. (eds.) SSPR 2006 and SPR 2006. LNCS, vol. 4109, pp. 871–880. Springer, Heidelberg (2006)
Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms. Trends in Logic, vol. 8. Kluwer Academic Publishers, Dordrecht (2000)
Pokorný, J., Vojtás, P.: A data model for flexible querying. In: Caplinskas, A., Eder, J. (eds.) ADBIS 2001. LNCS, vol. 2151, pp. 280–293. Springer, Heidelberg (2001)
Skopal, T., Lokoč, J.: NM-tree: Flexible approximate similarity search in metric and non-metric spaces. In: Bhowmick, S.S., Küng, J., Wagner, R. (eds.) DEXA 2008. LNCS, vol. 5181, pp. 312–325. Springer, Heidelberg (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Eckhardt, A., Skopal, T., Vojtáš, P. (2009). On Fuzzy vs. Metric Similarity Search in Complex Databases. In: Andreasen, T., Yager, R.R., Bulskov, H., Christiansen, H., Larsen, H.L. (eds) Flexible Query Answering Systems. FQAS 2009. Lecture Notes in Computer Science(), vol 5822. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04957-6_6
Download citation
DOI: https://doi.org/10.1007/978-3-642-04957-6_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-04956-9
Online ISBN: 978-3-642-04957-6
eBook Packages: Computer ScienceComputer Science (R0)