Abstract
Rule bases are increasingly being used as repositories of knowledge content on the Semantic Web. As the size and complexity of these rule bases increases, developers and end users need methods of rule abstraction to facilitate rule management. In this paper, we describe a rule abstraction method for Semantic Web Rule Language (SWRL) rules that is based on lexical analysis and a set of heuristics. Our method results in a tree data structure that we exploit in creating techniques to visualize, paraphrase, and categorize SWRL rules. We evaluate our approach by applying it to several biomedical ontologies that contain SWRL rules, and show how the results reveal rule patterns within the rule base. We have implemented our method as a plug-in tool for Protégé-OWL, the most widely used ontology modeling software for the Semantic Web. Our tool can allow users to rapidly explore content and patterns in SWRL rule bases, enabling their acquisition and management.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Maedche, A., Motik, B., Stojanovic, L., Studer, R., Volz, R.: Ontologies for Enterprise Knowledge Management. IEEE Intelligent Systems 18(2), 26–33 (2003)
Maedche, A., Staab, S.: Ontology learning for the Semantic Web. IEEE Intelligent systems 16(2) (2001)
Wang, X.H., Zhang, D.Q., Gu, T., Pung, H.K.: Ontology Based Context Modeling and Reasoning using OWL. In: Proceedings of the Second IEEE Annual Conference on Pervasive Computing and Communications Workshops, PERCOMW, vol. 18. IEEE Computer Society, Washington (2004)
Ostrowski, D.A.: Rule Definition for Managing Ontology Development. Advances in Rule Interchange and Applications, 174–181 (2007)
Dou, D., McDermott, D., Qi, P.: Ontology translation on the Semantic Web. Journal on Data Semantics (JoDS) II, 35–57 (2005)
Maedche, A., Staab, S.: Discovering conceptual relations from text. In: ECAI 2000, Proceedings of the 14th European Conference on Artificial Intelligence. IOS Press, Amsterdam (2000)
Berendt, B., Hotho, A., Stumme, G.: Towards Semantic Web Mining. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS, vol. 2342, pp. 264–278. Springer, Heidelberg (2002)
Liu, B., Hsu, W., Ma, Y.: Integrating classification and association rule mining. In: Appeared in KDD 1998, New York (1998)
Vaidya, J., Clifton, C.: Privacy preserving association rule mining in vertically partitioned data. In: Proceedings of the Eighth ACM SIGKDD international Conference on Knowledge Discovery and Data Mining, Edmonton, Alberta, Canada (2002)
Hipp, J., Güntzer, U., Nakhaeizadeh, G.: Algorithms for association rule mining — a general survey and comparison. SIGKDD Explor. Newsl. 2, 1 (2000)
Bayardo, R.J., Agrawal, R., Gunopulos, D.: Constraint-Based Rule Mining in Large, Dense Databases. Data Min. Knowl. Discov. 4, 2–3 (2000)
Rahwan, I., Amgoud, L.: An argumentation based approach for practical reasoning. In: Proceedings of the Fifth international Joint Conference on Autonomous Agents and Multiagent Systems, Hakodate, Japan (2006)
García, A.J., Simari, G.R.: Defeasible logic programming: an argumentative approach. Theory Pract. Log. Program. 4(2), 95–138 (2004)
Bench-Capon, T.J.M., Dunne, P.E.: Argumentation in artificial intelligence. Artificial Intelligence 171(10-15), 619 (2007)
Chesñevar, C., McGinnis, J., Modgil, S., Rahwan, I., Reed, C., Simari, G., South, M., Vreeswijk, G., Willmott, S.: Towards an argument interchange format. Knowl. Eng. Rev. 21(4), 293–316 (2006)
Core, M.G., Lane, H.C., van Lent, M., Gomboc, D., Solomon, S., Rosenberg, M.: Building explainable artificial intelligence systems. In: Proceedings of the 18th Conference on Innovative Applications of Artificial Intelligence (IAAI 2006), Boston, MA (2006)
Johnson, W.L.: Agents that explain their own actions. In: Proc. of the Fourth Conference on Computer Generated Forces and Behavioral Representation, Orlando, FL (1994)
Van Lent, M., Fisher, W., Mancuso, M.: An explainable artificial intelligence system for small-unit tactical behavior. In: Proceedings of the 16th Conference on Innovative Applications of Artificial Intelligence (IAAI 2004), San Jose, CA, pp. 900–907 (2004)
Wong, P.C., Whitney, P., Thomas, J.: Visualizing Association Rules for Text Mining. In: Proceedings of the 1999 IEEE Symposium on information Visualization. INFOVIS, p. 120. IEEE Computer Society, Washington (1999)
Blanchard, J., Guillet, F., Briand, H.: Exploratory Visualization for Association Rule Rummaging. In: KDD 2003 Workshop on Multimedia Data Mining (MDM 2003) (2003)
Pfleeger, S.L., Hatton, L.: Investigating the Influence of Formal Methods. Computer 30(2), 33–43 (1997)
Tilley, T., Cole, R., Becker, P., Eklund, P.: A survey of formal concept analysis support for software engineering activities. In: Ganter, B., Stumme, G., Wille, R. (eds.) Formal Concept Analysis. LNCS (LNAI), vol. 3626, pp. 250–271. Springer, Heidelberg (2005)
Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival, X.: A static analyzer for large safety-critical software. In: Proceedings of the ACM SIGPLAN 2003 Conference on Programming Language Design and Implementation. PLDI 2003, San Diego, California, USA, pp. 196–207. ACM, New York (2003)
Bush, W.R., Pincus, J.D., Sielaff, D.J.: A static analyzer for finding dynamic programming errors. Softw. Pract. Exper. 30(7), 775–802 (2000)
Dean, J., Grove, D., Chambers, C.: Optimization of Object-Oriented Programs Using Static Class Hierarchy Analysis. In: Olthoff, W. (ed.) ECOOP 1995. LNCS, vol. 952, pp. 77–101. Springer, Heidelberg (1995)
Leite, J.C., Leonardi, M.C.: Business Rules as Organizational Policies. In: Proceedings of the 9th international Workshop on Software Specification and Design. International Workshop on Software Specifications & Design, p. 68. IEEE Computer Society, Washington (1998)
Wright, G., Ayton, P.: Eliciting and modelling expert knowledge. Decis. Support Syst. 3(1), 13–26 (1987)
Mechitov, A.I., Moshkovich, H.M., Olson, D.L.: Problems of decision rule elicitation in a classification task. Decis. Support Syst. 12(2), 115–126 (1994)
Larichev, A.I., Moshkovich, H.M.: Decision support system “CLASS” for R&D planning. In: Proceedings of the First International Conference on Expert Planning Systems, Brighton, England, pp. 227–232 (1990)
Business Rule Management Systems, http://en.wikipedia.org/wiki/BRMS
SAP NetWeaver, https://www.sdn.sap.com/irj/sdn/nw-rules-management
Park, S., Lee, J.K.: Rule identification using ontology while acquiring rules from Web pages. Int. J. Hum. Comput. Stud. 65(7), 659–673 (2007)
McGuinness, D.L., van Harmelen, F. (eds.): OWL Web Ontology Language Overview. W3C Recommendation (February 10, 2004), http://www.w3.org/TR/2004/REC-owl-features-20040210/
SWRL Submission, http://www.w3.org/Submission/SWRL/
California Driver Handbook, http://www.dmv.ca.gov/pubs/dl600.pdf
O’Connor, M.J., Musen, M.A., Das, A.: Using the Semantic Web Rule Language in the Development of Ontology-Driven Applications. In: Handbook of Research on Emerging Rule-Based Languages and Technologies: Open Solutions and Approaches, ch. XXII. IGI Publishing (2009)
Knublauch, H., Fergerson, R.W., Noy, N.F., Musen, M.A.: The Protégé OWL Plugin: An open development environment for semantic web applications. In: Proceedings of the Third International Semantic Web Conference, Hiroshima, Japan, pp. 229–243 (2004)
Peace, J., Brennan, P.F.: Instance testing of the family history ontology. In: Proceedings of the American Medical Informatics Association (AMIA) Annual Symposium, Washington, DC, p. 1088 (2008)
Young, L., Tu, S.W., Tennakoon, L., Vismer, D., Astakhov, V., Gupta, A., Grethe, J.S., Martone, M.E., Das, A.K., McAuliffe, M.J.: Ontology-Driven Data Integration for Autism Research. In: Proceedings of the 22nd IEEE International Symposium on Computer-Based Medical Systems, IEEE CBMS (2009)
Tu, S., Tennakoon, L., O’Connor, M., Shankar, R., Das, A.: Using an integrated ontology and information model for querying and reasoning about phenotypes: the case of autism. In: Proceedings of the American Medical Informatics Association (AMIA) Annual Symposium, Washington, DC, pp. 727–731 (2008)
Levy, M.A., Rubin, D.L.: Tool support to enable evaluation of the clinical response to treatment. In: Proceedings of the American Medical Informatics Association (AMIA) Annual Symposium, Washington, DC, pp. 399–403 (2008)
Kulakowski, K., Nalepa, G.J.: Using UML state diagrams for visual modeling of business rules. In: International Multiconference on Computer Science and Information Technology, 2008. MCSIT 2008, October 20–22, pp. 189–194 (2008)
Lukichev, S.: Visual Modeling and Verbalization of Rules, KnowledgeWeb PhD Symposium (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hassanpour, S., O’Connor, M.J., Das, A.K. (2009). Exploration of SWRL Rule Bases through Visualization, Paraphrasing, and Categorization of Rules. In: Governatori, G., Hall, J., Paschke, A. (eds) Rule Interchange and Applications. RuleML 2009. Lecture Notes in Computer Science, vol 5858. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04985-9_23
Download citation
DOI: https://doi.org/10.1007/978-3-642-04985-9_23
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-04984-2
Online ISBN: 978-3-642-04985-9
eBook Packages: Computer ScienceComputer Science (R0)