
This item is the archived peer-reviewed author-version of:

ACCADA: a framework for continuous context-aware deployment and adaptation

Reference:
Gui Ning, Sun Hong, De Florio Vincenzo, Blondia Christian.- ACCADA: a framework for continuous
context-aware deployment and adaptation
Proceedings of the 11th International Symposium on Stabilization, Safety, and Security of Distributed Systems
(SSS 2009) - Berlin, Springer, 2009
Handle: http://hdl.handle.net/10067/794240151162165141

Institutional repository IRUA

http://hdl.handle.net/10067/794240151162165141
http://anet.uantwerpen.be/irua

 1

ACCADA: A Framework for Continuous Context-Aware
Deployment and Adaptation

Ning Gui Vincenzo De Florio Hong Sun Chris Blondia

PATS group, University of Antwerp, Belgium
and IBBT, Ghent-Ledeberg, Belgium

{ning.gui, vincenzo.deflorio,chris.blondia}@ua.ac.be

Abstract. Software systems are increasingly expected to dynamically self-adapt
to the changing environments. One of the principle adaptation mechanisms is
dynamic recomposition of application components. This paper addresses the
key issues that arise when external context knowledge is used to steer the run-
time (re)composition process. In order to integrate such knowledge into this
process, A Continuous Context-Aware Deployment and Adaptation (ACCADA)
framework is proposed. To support run-time component composition, the
essential runtime abstractions of the underlying component model are studied.
By using a layered modeling approach, our framework gradually incorporates
design-time as well as run-time knowledge into the component composition
process. Service orientation is employed to facilitate the changes of adaptation
policy. Results show that our framework has significant advantages over
traditional approaches in light of flexibility, resource usage and lines of code.
Although our experience was done based on the OSGi middleware, we believe
our findings to be general to other architecture-based management systems.

Keywords: Adaptive middleware, context-specific knowledge, run-time
composition, service oriented architecture

1 INTRODUCTION

Software systems today increasingly operate in changing environments and with
diverse user needs, resulting in the continued increasing complexity for managing and
adapting these systems. As a consequence, software systems are increasingly
expected to dynamically self-adapt to accommodate resource variability, changing
user needs, and system faults. However, mechanisms that support self-adaptation
currently are hardwired within each application. These approaches are often highly
application-specific, static in nature, and tightly bound to the code. Being static, such
mechanisms can hardly cope with dynamic context changes. Furthermore, the
localized treatments of application adaptation could not effectively deal with those
complex environments in which many multi-influencing applications coexist.

In order to deal with the adaptation problem outside single application scope,
architecture-based adaptation frameworks are proposed in [1] [2] to handle the cross
system adaptation. Rather than scatter the adaptation logics in different applications
and represent them as low-level binary code, architecture-based adaptation uses
external models and mechanisms in a closed-loop control fashion to achieve various

 2

goals by monitoring and adapting system behavior across application domains. A
well-accepted design principle in architecture-based management consists in using a
component-based technology to develop management system and application
structure [3-6] .

However, in traditional approaches, design-time knowledge for application
structure is largely lost during the off-line application construction process. Without
this knowledge, it is nearly impossible for external engines to effectively change a
application’ structure with the assurance that the new configuration would perform as
intended. On the other hand, Integration of external context knowledge1

During our research on run-time adaptation, we observed that in order to achieve
effective architecture-based adaptation framework, three important prerequisites must
be fulfilled. First, when building application, those practices of rigid location and
binding between component instances should be replaced with run-time, context-
specific composition. Second, selected design-time information must be exposed and
those constraints must be made explicitly verifiable during run-time. Third, since
different contexts have radically different properties of interest and require dynamic
modification strategies, it is critical that the architectural control model and
modification strategies could be easily tailored to various system contexts.

 to application
becomes very difficult as that knowledge can only be available well after an
application was built.

Our framework tackles these problems from different perspectives. A run-time
application construction methodology is proposed to provide a continuum between
the design and run-time process. An architecture-based management framework
structure is designed to facilitate the integration of context-specific adaptation
knowledge. In order to support run-time component composition, a declarative
component model with uniform management interface and meta-data based reflection
is proposed. By adopting a service oriented architecture-based implementation, our
framework provides efficient mechanisms for adapting to specific context
requirements. The effectiveness of our architecture is demonstrated both from
qualitative and a quantitative point of view. Simulation results show the soundness of
our implementation in term of line of code, memory and adaptation capabilities.

The rest of the paper is organized as follows. Section 2 exposes our design
methodology and a context-specific management framework and those challenges in
realizing this framework. Section 3 presents the structure of our management
framework as well as the component model and construction process. The ideas
exposed in this paper have been validated by a set of comparison from different
aspects in Section 4. Related work is discussed in Section 5, and we conclude in
Section 6.

2 Architecture-Based Adaptation

Architecture-based adaptation is proposed to deal with cross system adaptation. In
principle, such external control mechanisms provide a more effective engineering

1 By context, we refer to [7] and define it as “any information that characterizes a situation

related to the interaction between humans, applications and the surrounding environment.”

 3

solution with respect to internal mechanisms for self-adaptation because they abstract
the concerns of problem detection and resolution into separable system modules[2].
However, systematic support for multi-context knowledge integration is largely
missing. An important contribution of this paper is the designing and developing
architectural principles and design patterns to integrate different context-specific
knowledge into architecture-based adaption framework. We design the context-
specific application methodology to better support run-time component composition,

2.1 Context-specific application construction methodology

In order to more effectively deal with run-time component composition, we
propose a new methodology to explicitly incorporate context-specific knowledge into
the software composition & adaptation process. The new architecture design &
composition flow, depicted in Figure 1, represents a procedure which tries to
incorporate the functional design information with context concerns in compositing
run-time software architecture. Depending on the employed design languages and
corresponding tools, the compliance with the functional interface is enforced during
the design process. However, unlike traditional approach, in which a component’s
functional knowledge is lost during this compiling process, in this case the design
time information is explicitly exposed and maintained.

Fig. 1. Context-specific Application Construction Flow

As an application is constructed during run-time, in order to achieve correct and
pointed adaptation, a set of constraints must be maintained. In this process, three main
aspects constraints should be evaluated. 1) The functional dependence constraints
must be satisfied 2) a component’s non-functional constraints must be guaranteed:
this information includes, for instance, requirements for CPU speed, screen size or
that some property value be within a certain range. 3) context-specific knowledge,
which specifies the domain related information and adaptation strategy should also
hold valid after adaptation process.

As the dashed arrow points out, a managed application is continuously restructured
and evolved according to context switches. The combined knowledge enables
automatically run-time verification for constraints from various aspects which allows
the system to change the software structure according to its hosting environment and
without violating constraints from these three aspects.

 4

2.2 Motivation Example

To better illustrate all the complexities in introducing the context knowledge into the
application composition process, we make use of an example scenario that will be
revisited several times throughout the course of this paper.

Today we are surrounded by an ever increasing number of networked equipment
which can be harnessed to do something for you for temporal or long-term base. The
open-system approach implies that a set of new applications will be installed into the
host devices without thoroughly system analysis.

Fig. 2. QoE adaptation Demonstration

As an example, let us consider a Set-top device with Open platform support. The
basic application of such device is TV processing. In brief, this application will
received streaming video data from remote server, decode this data and output it to
the TV port. As an open system, Set-top can also install certain applications to
enhance its usability. For example, a user can install a new application which
transcode recorded High Definition TV stream to IPhone format for later display on
his/her mobile devices. Figure 2 shows the simplified component graph for those two
applications, which will be further studied in later sections. As a typical multi-task
system, if a user starts those two applications, a Set-top will try to execute the two
applications simultaneously no matter whether the Set-top device has enough
resources. If that is not the case, this may eventually lead to possibly transient timing
problems of TV decoding task including missing frame, data overflows etc. These
kinds of time breaches can result in poor video quality and bad user experience.

Context-specific knowledge, however, can help the architecture automatically
determine which actions should be taken according to the current context. One
possible strategy can choose to disable the computationally intensive transcoding
component and reserve enough system resources for TV application. This is because a
user normally prefers to give highest priority to those applications that matter their
experience most. Figure 2 shows the snapshot of component states after such
adaptation.

 5

3 ARCHITECTURAL FRAMEWORK

We adopt a standard view of software architecture that is typically used today at
design time to characterize an application to be built. Specifically, an application is
represented as a graph of interacting computational elements. Nodes in the graph,
called components, represent the system’s principal computational elements (software
or hardware) and data stores. The connections represent the pathways for interaction
between the components. Additionally, the component may be annotated with various
properties, such as expected throughputs, latencies, and protocols of interaction.

In our framework, applications are run-time composed from a set of managed
component instances. Context-specific adaptation is achieved by dynamic
(re)composing application components according to context knowledge.

3.1 Architecture-based management framework

Figure 3 shows our ACCADA architecture for adaptation. As can be clearly seen
from that picture, our approach makes use of an extended control loop, consisting of
five basic modules – Event Monitor, Adaptation Actuator, Structural Modeler,
Context-Specific Modeler and Context Selector. ACCADA uses an abstract
architectural model to monitor a running system’s run-time properties, evaluate the
model for (functional as well as context-specific) violation, and – if a problem occurs
– performs global and component-level adaptations on the running system.

The Event Monitor module observes and measures various system states. It sends
notifications to trigger a new round of the adaptation process. The possible source of
adaptation may include, for example, a new component being installed or the CPU or
memory utilization reaching a status that may have significant effect on the existing
system configuration. It could also be a simple Timer that triggers periodically at
certain time intervals. The Adaptation Actuator carries out the actual system
modification. The actual action set is tightly related to the component implementation.
From our developing experience, in order to achieve effective architecture-based
adaptation, the basic set of actions should include component lifecycle control,
attribute configuration, and component reference manipulation.

The above two modules provide an interface to manage the installed component
instances and form the ACCADA Management Layer (discussed in Section 3.4). The
other three modules constitute what we call the Modeling Layer which builds the
system architectural model according to the changing contexts(Section 3.3)

Building a software system architecture model is not a trivial endeavor – it
includes handling design-time knowledge such as interfaces or constraints as well as
run-time aspects on environment changes. By using the Divide and Conquer principle,
we assign the management of these two aspects to two different modules to more
effectively deal with two different requirements – software architecture management
and context-specific knowledge integration.

 6

Fig. 3. ACCADA framework

One module, the Structural Modeler, manages functional dependences between
installed components – checking whether the required and provided interfaces are
compatible – and maintains application’s software architecture. This module is
comparably stable as it is only determined by the component implementation model
and will not change with context. So, it is designed as the core module in our system.
In addition to those functional dependence managements, the traces of all the
adaptation steps performed is also monitored and exposed for later analysis. The other
set of modules are the Context-specific Modeler. In order to cope with dynamically
changing environments, rather than going for the traditional approach of “one adaptor
for all possible contexts”, our framework supports more than one Context-specific
Modelers specifically designed for different contexts in the system. By reasoning
upon various system metrics, Context Selector is designed to determine the most
appropriate Modeler to date.

Service-oriented Approach: In order to achieve more reusability and flexibility, our
framework is designed according to the Service Oriented model. Each module is
designed and implemented as a service provider. Modules implement and register
their interfaces into the system service registry. Thanks to such loosely coupled
structure, a candidate service provider can be easily interchanged during system run-
time. In doing so, many existing and/or future more sophisticated context adaptation
policies can be plugged into our framework.

3.2 Requirements for Component Model

In ACCADA, a component represents a single unit of functionality and deployment.
In order to achieve architecture-based run-time composition, a component model with
following attributes is needed:
Uniform management interface: As components are individually installed and
configured by the system service, it is very important that a component could be
managed through a uniform management interface. With this interface, components
are reified in a uniform way for configuration, state monitoring and management.
This approach enables system management services such as Event Monitor and the

 7

Adaptation Actuator to be designed in a generic way and used across multiple
application domains. The management interface supports lifecycle control and get/set
component properties. It can be accessed via two different approaches – either
accessing directly or mediated through an architectural layer which, apart from
performing the requested actions, also coherently updates the status of the global
software architecture. In order to maintain a coherent and accurate global
configuration, it is vital that this uniform management interface can only be accessed
through architecture- exposed methods. Our previous work provides the detailed
design of such interface.

Component description and introspection: In order to support different types of
components, a component model should be able to describe the component’s
distinguished stable characteristics. These Features include a component’s provided
and required interfaces, component’s properties as well as other constraints, for
example, the type of CPU that is required. Interface-based introspective and reflective
component models are proposed in Fractal [8] and OpenCom [9, 10], in which a
general interface is designed for such knowledge discovery.

Instead of following these approaches, a concise management interface is used to
control and capture the components’ run-time state, while meta-data is applied to
expose component-specific knowledge. Compared to the interface-based
introspection, it provides designers with a more light-weighted and explicit solution.
Compared to Interface-based approach, meta-data approach enables components to be
identified prior to their initialization; furthermore, this reduces the burden of
component developers to implement those introspection interfaces, as meta-data
already provides much design-time structural information. Those meta-data can be
naturally abstracted from application design, validated in the verification process, and
then reused during the run-time composition process. In this approach, a component
design knowledge actually winds through its whole lifecycle. The ACCADA
framework can dynamically discover and retrieve a component’s structural
characteristics as soon as they are installed into the system.

In our previous work in the Declarative Real-time component model (DRCom), a
simple declarative language is designed. Please refer [11]for details.

3.3 Modeling Layer

As already mentioned, modeling the whole system architecture and making pointed
adaptation decisions is a very complex process. That is especially true in our
framework, as not only functional dependences but also the context knowledge are
considered in the composition process. These two aspects have been kept separated
and assigned to what we call Structural Modeler and Context-specific Modeler,
described in what follows.

3.3.1 Structural Modeler

As the application is constructed, configured and reconstructed during system run-
time, how to derive the functional and structural dependency among components
becomes one of the key problems in run-time component composition.The Structural
Modeler consists of several processes, the most important of which are:

 8

Dependence Compatibility Check: This component first checks all the installed
components dependence relationship. A component can only be initialized when all
its required interfaces (Receptacles) have corresponding provided interfaces.. This
also guarantees component initialization orders. According to different component
model, different policies may be employed, such as the interface based matching –
used in the model of Declarative Service and Fractal model – or data communication
matching as it is the case in DRCom model.

Such function is quite important for run-time composition as it provides a general
matching service which is indispensable in maintaining application architecture
during system configuration changes.
Maintenance of Application architecture (Reference update): As component will
be installed and uninstalled during run-time, the issue of reference update during
component exchange must be addressed. When one component is exchanged for
another it is necessary to update the references that point to the old component such
that they refer to the new one. Doing so is necessary to ensure that the program
continues to execute correctly. For example, when a component is disabled, the
modeler will firstly check whether another component with the same functional
attributes exists. If such a candidate is successfully found, the modeler will repair the
references between components to change the old references with the new one, and
then destroy the invalid connections. Otherwise, all components which depend on this
disabled component will also be disabled. All these adaptations are performed during
run-time without disabling the whole application. By having the system managing the
run-time reference update, an application’s architecture integrity can be preserved
even in the face of configuration changes.

Many run-time composition approaches, such as Servicebinder [12] and Perimorph
[13], provide similar layer to manage the references between components. However,
without context information integration, this functional layer itself could not solve
conflicts when several functional configurations are available. Such kind of ambiguity
can only be handled with context knowledge.

3.3.2 Context-specific Modeler

As the Structural Modeler deals with the functional related constraints in building and
maintaining the software architecture, the Context-specific Modeler deals with
constraints related to the knowledge of context. All components that satisfy functional
requirements will be further evaluated by context knowledge. As a result, the modeler
will build a context-specific architecture model using its knowledge and adaptation
strategy. This model will be checked periodically and/or on request. If a constraints
violation occurs, it determines the course of action and delegates such actions to the
adaptations execution module.

In ACCADA, several context modelers with different context adaptation
knowledge can be installed simultaneously. They implement the same context
modeler service interface with different attributes describing their target concerns.
Such concerns could be e.g. prolonging mission life in case of low batteries, or
maximizing user experience when watching movies on a given mobile device. Service
orientation enables the architecture to support different or future unpremeditated
adaptation strategies. Another benefit from this approach is that one modeler instance

 9

just needs to deal with a fraction of all possible adaptation concerns. Compared to
“one size fits all” approach, our solution makes the modeler very concise, easy to
implement and consuming fewer resources. By switching Context-specific Modeler,
the system architecture model as well as the adaptation behavior can be easily altered,
which could be beneficial in matching different environmental conditions. Here,
which Context-specific Modeler is to be used is determined by the Context Selector .

3.3.3 Context Selector

As several Context-specific Reasoners may co-exist in a specific time, only one of
them will be selected according to current system context. It will return an active
context modeler “best matching” the current environment. According to different
system requirements, the reasoning logic may be as simple as using CPU status as
decision logics, or as complex as using a semantic reasoning engine or some other
artificial intelligence approach. By separating three kinds of responsibilities -knowing
when a modeler is useful, selecting among different modelers, and using a modeler,
new modelers can be integrated into software system in a way that is transparent to
users. One simple interface is designed to return the best matched reference:

public interface ContextSelector
 { public ContextAdaptor findCurrentFitAdaptor(); }

3.4 Management Layer

This layer provides an abstract interface to manage the interactions between
modeling layer and component instances. It consists of two main elements: Event
Monitor and Adaptation Actuator. Event Monitor tracks installed components’ state
changes as well as probes the measured attributes across different system
components. The value of a managed component’s attribute can be retrieved via the
getProperty(…) methods. Adaptation Actuator implements the atomic adaptation
actions that the system can take. This can include actions that manage a component’s
lifecycle state – start, stop, pause, stop – as well as properties manipulations via
setProperty(…), for example, changing the computation task’s priority, period… The
uniform management interface simplifies the design of the actuator as the actions can
be taken in a general way and can be easily reused to different component models

3.5 General adaptation process

The above five key modules residing in the modeling and management layers are
orchestrated so as to form an external control loop across different application
domain. When a significant change has been detected, the modeling layer is notified
to check whether existing constraints are being violated. Algorithm 1 describes the
general adaptation process.

Algorithm 1: General adaptation process
Requires: An architecture-based management system with context-specific adaptation logic
Ensure: Keep constraints satisfied in the face of changes, both functional as non-functional,
through Context-specific knowledge

 10

1. A system change triggers adaptation process
2. Structural Modeler gets the set of satisfied components in terms of functional

dependence
3. Context Selector returns Context-specific modeler’s reference
4. The selected Context-specific Modeler builds an adaptation plan
5. Structure modeler merges two adaptation plan
6. The Adaptation Actuator executes the adaptation plan

4 IMPLEMENTATION and SIMULATION

In this section, we will discuss our implementation to achieve a context-specific
architecture-based adaptation. This framework has been validated both from a
qualitative and a quantitative point of view including such concerns as
implementation complexity, adaptation flexibility, memory usage, etc.

4.1 System implementation

Equinox, a popular, free, open source OSGi Platform developed by the Eclipse
organization, is used as our basic development platform. In current state, our
implementation focused on providing a light-weight implementation for local
applications managements. However, it can be generally extended to distributed
environment via using R-OSGi (Remote OSGi) support. We use slightly revised
DRCom model[11, 14]. It was originally designed for the construction of dynamically
configurable & reflective real-time systems.

Table 1. Lines of code for Architecture-based adaptation

 Functions Line of code Binary size (byte)

Monitoring Reflections of code 142 2353
Monitoring 354 7407

Parsing Model class 1329 2353
Parser class 1450 36000

Structural Modeler
Functional constraints 200 15230
Reference management 249 5382

Adaptation executor
Dispose management 459 11782
Instance management 369 8795
Meta-function Invoking 280 6714

Context-specific adaptation Plug-in constraint adaptor 108 3798

Context Reasoner Simple context match 90 2620
Auxiliary code 500+

As discussed in Section 3.1, this system is implemented via five key modules. The

lines of code of each implemented modules is shown at Table 1. Our framework also
provides such mechanisms as deployment support and version control by simply
reusing OSGi system service, which leads to a lean and quite concise implementation.

One of the basic services in our system is the Meta-data Parsing. This module
parses the meta-data and stores it in the form of meta-data objects. A simple
component meta-data language is defined to describe component characteristics. This
component model designs an extensible XML format that supports future more

 11

complex description languages: Due to page limits, here we will not go into details.
Clearly the complexity of Context Selector and Context-specific Modeler is highly
implementation specific, thus the lines of code listed here are just the simple
adaptation algorithm for our TV scenario described in section 4.

4.2 Adaptation to different context

In the traditional approach towards application-based adaptation, in order to achieve
adaptation matching different context requirements, developers normally need to
reprogram the whole adaptation architecture. There are, to name but a few, modules
for detection, modules for component management, adaptation logic as well as the
execution modules.

Table 2. Application-based vs. Architecture-based Adaptation

 Application adaptation ACCADA Framework
Adaptation logic Prefixed Change in runtime
Context knowledge Integration Static/Internal Flexible/Architecture
Implementation Complexity High Low
Multi-context support NA or static Yes and flexible
Context-specific Adaptor implementation Complex Concise
Separation of design concerns Mixed Yes
Level of Adaptation Inside specific

Application
Across several
applications

 However, during context changes, only the adaptation strategy should be altered to
express the context-specific knowledge. Without the burden to support software
maintenance, a context-specific adaptor can be implemented very concisely. For
instance, our adaptation to guarantee the QoE of the TV application can be
implemented in less than 120 lines of codes. On the other hand, an ad-hoc approach
need re-implement new version of a basic component management run-time (in our
case, about 2000 lines). Thus, programmers can focus on adaptation logic rather than
having to take care of those low level details. Table 2 shows the comparison between
application specific adaptation approaches and our framework.

Certain component frameworks provide tools to help programmers to
automatically generate auxiliary codes. Examples include Juliac 2

4.3 Adaptation Complexity

- a Fractal [8]
toolchain backend, which generates Java source code corresponding to the application
architecture specified by the designer. In the following section, we compare our
approach with Juliac’s.

In the Juliac approach, ADL language is used to generate the glue code and the codes
for introspection. The simplest “hello world” example uses two components – Client
and Server. The Client will try to invoke the service exposed interface to print the
“hello world” string. Table 3 shows that, for such simple application with only two
functional components, the business code is about 100 lines, including import and
interface definitions. With Juliac, about 3500 lines of Java codes will be generated. In

2 Available at http://fractal.ow2.org/

 12

comparison, in ACCADA, no process for off-line auxiliary code generation is needed.
An application mainly contains its business code, simple and easy to manage.

Table 3. Line of codes

 Application size Lines of code(business) Lines of code (generated)

Juliac 95.7 KB 100 3500
ACCADA 4.7 KB 140 0

Resource consumption: we executed this application with different number of
instances. With the Juliac approach, the memory consumption will increase
considerably with the number of applications, while in our framework it will increase
of about 42Kbyte for each installed application. For each installed component, about
13Kbyte memory are needed to store the parsed meta-data information and reference
relations. This overhead is comparably small with respect to the more than 430Kbyte
memory required by the Fractal model. This discrepancy comes from the different
models employed. Each Juliac application has to carry a full set of system run-time,
with the increasing number of application; the overhead from the basic system service
can be intolerably high. In contrast, ACCADA framework is designed to support a set
of managed components and is decoupled from application business logics. No matter
how many applications are deployed, only one set of basic services is needed.

In this test, we used equinox, a general purpose OSGi platform. Other
implementation, such as Concierge OSGi [15], achieves memory consumption less
than 200Kbytes memories. In other words, by simply changing OSGi implementation,
the resource consumption can be further reduced.

4.4 Architecture performance

To evaluate the performance of the Automatic Configuration Service, we
instrumented a test to measure the time for fetching, parsing, reference management,
and configuring. We focused on the time for installing a single component as we vary
the number of managed components by the framework. Here, each component has
one in port, one out port, and one attribute. The size of each component is the same –
20.6 KB. We use a Dell D630 laptop with 2.2 GHz dual core T7500 CPU, 2GB RAM
and 80 GB 7200RPM HDD. The JVM we adopted is JAVA 1.6.0.2 SDK on Linux.

Here, we use a different Context Modeler with the one described in section 4. It
checks following constraints (1). The arrival component will only be enabled when
(1) holds true. In order to best test framework’s performance, all these component
execution tasks remains disabled during the experiment. Here, in the newly installed
component, the component initialization time is not counted as it may varied
according to different implementations.
 ∑Execution time

Period
< 1 for all enabled components (1)

Installing a new component normally consists of five main steps: component loading,
meta-data processing, structural modeling, context modeling, and actuation. Figure 4
shows the absolute times spent in each steps. Each value is the arithmetic mean of 250
runs of the experiment. In order to better illustrate the trend of different steps, we use

 13

Fig. 4. Framework Performance on adding one component

two Y direction axes in expressing data. Values in stacked column use the main Y
axis (left) and those values in marked lines use the secondary Y axis (right) . The time
scale used in both axes is micro-seconds (µs).

With the number of managed components grows, component installation time
grows very slowly. It mainly due to the fact that two key elements –component
loading time, meta-data processing time which count more than 80% total time, keep
comparably stable when component number n grows. In contrast, the other three key
elements, the structural modeling, context modeling and actuation will increase
lineally with n as it has computing complexity O (n). Context modeling process which
checks whether the new component can satisfy the resource requirements also have
complexity of O (n) (stateless implementation, no optimization). Here, the actuation
process also includes time for post-processing the modeling results from two
modeling processes so it changes with the system scales. As most of the installation
time results from the large meta-data processing task, we optimized the installation
process by parsing a component’s meta-data prior to its usage (without initiating the
component). We call this a “warm-start”. This approach can effectively reduce a
component response time – from 1000 µs to about 200µs.

Simulation results show that our framework scales well when the number of
managed components grows. However, the Context modeling time confines to the
simple algorithm described here. Other more complex reasoning policies may not
perform well when the number of managed components grows. This is highly policy
dependent and is out of the scope of this paper. The Context Selector also has similar
characteristics.

5 RELATED WORK

There is a substantial body of literature on reconfigurable middleware systems.
Compared to on our earlier work on the DRCom component mode, our framework
exhibits a richer and more coherent set of features to support context-specific
knowledge and provides a systematic approach to integrate such knowledge.

0

200

400

600

800

1000

1200

1400

1600

0

50

100

150

200

250

1 5 10 15 20 25 30 35

A
dd

in
g

on
e

co
m

po
ne

nt
 (µ

s)

Number of Managed Components

Actuation

context
modeling
structure
modeling
load
component
Meta-data
Processing
cold install
time
warm start

 14

SmartFrog [4] is a framework for the management of configuration-driven
systems. The framework provides mechanisms for describing these component
collections and for deploying and managing their life cycle. However, there also lack
of support of how to support the context-specific adaptation and the description of
component is static and could not support non-functional properties and constraints.

Sylvain etc. identifies novel requirements on reflective component models for
architecture-based management systems [5].The construct layer is designed for the
meta-data checkpoint and replication. A faulty component can be repaired by restore
its state and all the meta-data information outside of the component instance.
However, their approach does not have clear definition and separation between
system services. The hard-wired architecture makes it very hard to reuse their
framework across different contexts.

Garlan etc. propose a general architecture-based self-adaptation framework [2].
The Rainbow framework uses software architectures and a reusable infrastructure to
support self-adaptation of software systems. The use of external adaptation
mechanisms allows the explicit specification of adaptation strategies for multiple
system concerns and domains. However, their approach lacks of component
composition support which is also important in building applications.

In order to deal with component dynamicity, Cervantes and Hall [12] propose a
service-oriented component based framework for constructing adaptive component-
based applications. The key part of the framework is the Service Binder which
automatically controls the relationship between components. Our approach mimics
theirs in dealing with component’s dynamicity. However, our approach can provide
more flexible adaptation compared to its static resolving policy.

Kasten etc. propose the Perimorph framework to achieve run-time composition and
state management for adaptive system [13] It enables an application designer to
quantify and codify collateral changes in terms of factor sets. However, due to lack of
a clear defined component model, it hard to extern their approach to cross
applications adaptation. Their approach also doesn’t consider how to integrate the
context adaptation knowledge.

In order to handle the complex dependence between components, Kon etc. propose
an integrated architecture for managing dependencies in distributed component based
systems [3]. The architecture supports automatic configuration and dynamic resource
management in distributed heterogeneous environments. However, how to support the
context changes is not specified in their approach.

6 CONCLUSION AND FUTURE WORK

In this paper we have described our approach to continuous context-aware
deployment and adaptation. We have shown in particular how to integrate context-
specific knowledge in run-time component composition. By designing the uniform
management interface, the architecture provides a unified programming model over a
wide range of components. The design time knowledge is maintained as meta-data
and reused during run-time component composition. Service-oriented model is used
in implementing architecture basic modules thus achieving more flexible system
architecture. This framework is easy to be configured to fit with different contexts.

 15

Although our experience was done based on the OSGi middleware, we believe our
findings to be general to architecture-based management systems using reflective
component models.

References
1. Oreizy, P., et al., An architecture-based approach to self-adaptive software. Ieee Intelligent

Systems & Their Applications, 1999. 14(3): p. 54-62.
2. Garlan, D., et al., Rainbow: Architecture-based self-adaptation with reusable infrastructure.

Computer, 2004. 37(10): p. 46-+.
3. Kon, F., et al., Design, implementation, and performance of an automatic configuration

service for distributed component systems. Software-Practice & Experience, 2005. 35(7)
4. Anderson, P., P. Goldsack, and J. Paterson, SmartFrog meets LCFG: Autonomous

reconfiguration with central policy control. Usenix Association Proceedings of the
Seventeenth Large Installation Systems Administration Conference, 2003

5. Sylvain, S., B. Fabienne, and P. Noel De, Using components for architecture-based
management: the self-repair case, in Proceedings of the 30th international conference on
Software engineering. 2008, ACM: Leipzig, Germany.

6. Costa, P., et al., The RUNES middleware for networked embedded systems and its
application in a disaster management scenario. Fifth Annual IEEE International Conference
on Pervasive Computing and Communications, 2007

7. Dey, A.K., G.D. Abowd, and D. Salber, A conceptual framework and a toolkit for
supporting the rapid prototyping of context-aware applications. Human-Computer
Interaction, 2001. 16(2-4): p. 97-+.

8. Seinturier, L., et al., A component model engineered with components and aspects.
Component-Based Software Engineering, Proceedings, 2006. 4063: p. 139-153.

9. Coulson, G., et al., A generic component model for building systems software. Acm
Transactions on Computer Systems, 2008. 26(1): p. -.

10. Michael, C., et al., An Efficient Component Model for the Construction of Adaptive
Middleware, in Proceedings of the IFIP/ACM International Conference on Distributed
Systems Platforms Heidelberg. 2001, Springer-Verlag.

11. Gui, N., et al. A framework for adaptive real-time applications: the declarative real-time
OSGi component model. in The 7th Workshop on Adaptive and Reflective
Middleware(ARM). 2008. Leuven,Belgium.

12. Hall, R.S. and H. Cervantes, Challenges in building service-oriented applications for OSGi.
Ieee Communications Magazine, 2004. 42(5): p. 144-149.

13. Kasten, E.P. and P.K. McKinley, Perimorph: Run-time composition and state management
for adaptive systems. 24th International Conference on Distributed Computing Systems
Workshops, Proceedings, 2004

14. Gui, N., et al. A Hybrid real-time component model for reconfigurable embedded systems.
in ACM symposium on Applied computing. 2008. Fortaleza, Ceara, Brazil.

15. Rellermeyer, J.S., Concierge: A Service Platform for Resource-Constrained Devices.
Operating systems review, 2007. 41(3): p. 245.

	INTRODUCTION
	Architecture-Based Adaptation
	Context-specific application construction methodology
	Motivation Example

	ARCHITECTURAL FRAMEWORK
	Architecture-based management framework
	Requirements for Component Model
	Modeling Layer
	Structural Modeler
	Context-specific Modeler
	Context Selector

	Management Layer
	General adaptation process

	IMPLEMENTATION and SIMULATION
	System implementation
	Adaptation to different context
	Adaptation Complexity
	Architecture performance

	RELATED WORK
	CONCLUSION AND FUTURE WORK
	References

