Skip to main content

Analysis of an Intentional Fault Which Is Undetectable by Local Checks under an Unfair Scheduler

  • Conference paper
Book cover Stabilization, Safety, and Security of Distributed Systems (SSS 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5873))

Included in the following conference series:

Abstract

We consider a malicious unfair adversary which generates an undetectable fault by local checks, called an intentional fault. Though the possibility of such a fault has ever been suggested, details of its influence and handling are unknown. We assume the intentional fault in a self-stabilizing mutual exclusion protocol, a hybrid of previously proposed ones that complement each other. In the hybrid protocol, we can cope with the fault by using optional strategies, whether or not sending a minor token, which plays a role of preventing the contamination from spreading. We construct a payoff matrix between a group of privileged processes and an adversary, and consider a multistage two-person zero sum game. We interpret the game in two ways: whether it continues or replays the game after an ME(mutual exclusion)-violating repair, in which more than one unexpected privileges are given. For each case, we evaluate the ability of malicious unfair adversary by using a mixed strategy. Our idea is also considered as a general framework for strengthening an algorithm against an intentional fault.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dasgupta, A., Ghosh, S., Tixeuil, S.: Selfish stabilization. In: Datta, A.K., Gradinariu, M. (eds.) SSS 2006. LNCS, vol. 4280, pp. 231–243. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  2. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Communications of the ACM 17(11), 643–644 (1974)

    Article  MATH  Google Scholar 

  3. Dolev, S., Israeli, A., Moran, S.: Analyzing expected time by scheduler-luck games. IEEE Transactions on Software Engineering 21(5), 429–439 (1995)

    Article  Google Scholar 

  4. Ghosh, S., Gupta, A.: An exercise in fault-containment: Self-stabilizing leader election. Information Processing Letters 59, 281–288 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  5. Ghosh, S., Gupta, A., Herman, T., Pemmaraju, S.V.: Fault-containing self-stabilizing algorithms. In: Proceedings of the 15th Annual ACM Symposium on Principles of Distributed Computing, pp. 45–54 (1996)

    Google Scholar 

  6. Ghosh, S., He, X.: Fault-containing self-stabilization using priority scheduling. Information Processing Letters 73, 145–151 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  7. Herman, T.: Superstabilizing mutual exclusion. Distributed Computing 13(1), 1–17 (2000)

    Article  Google Scholar 

  8. Herman, T., Pemmaraju, S.: Error-detecting codes and fault-containing self-stabilization. Information Processing Letters 73, 41–46 (2000)

    Article  MathSciNet  Google Scholar 

  9. Hohzaki, R.: A compulsory smuggling model of inspection game taking account of fulfillment probabilities of players’ aims. Journal of the Operations Research Society of Japan 49(4), 306–318 (2006)

    MATH  MathSciNet  Google Scholar 

  10. Johnen, C.: Service time optimal self-stabilizing token circulation protocol on anonymous unidirectional rings. In: 21st Symposium on Reliable Distributed Systems, pp. 80–89 (2002)

    Google Scholar 

  11. Kakugawa, H., Yamashita, M.: Uniform and self-stabilizing token rings allowing unfair daemon. IEEE Transactions on Parallel and Distributed Systems 8(2), 154–163 (1997)

    Article  Google Scholar 

  12. Kakugawa, H., Yamashita, M.: Uniform and self-stabilizing fair mutual exclusion on unidirectional rings under unfair distributed daemon. Journal of Parallel and Distributed Computing 62, 885–898 (2002)

    Article  MATH  Google Scholar 

  13. Katayama, Y., Ueda, E., Fujiwara, H., Masuzawa, T.: A latency optimal superstabilizing mutual exclusion protocol in unidirectional rings. Journal of Parallel and Distributed Computing 62(5), 865–884 (2002)

    Article  MATH  Google Scholar 

  14. Kiniwa, J.: Avoiding faulty privileges in fast stabilizing rings. IEICE Transactions on Fundamentals E85-A(5), 949–956 (2002)

    Google Scholar 

  15. Kiniwa, J.: How to improve safety under convergence using stable storage. IEEE Transactions on Parallel and Distributed Systems 17(4), 389–398 (2006)

    Article  Google Scholar 

  16. Kiniwa, J., Kikuta, K.: Game theoretic analysis of malicious faults which are undetectable by local checks. IEICE Technical Report 108(330), COMP2008-47 (2008)

    Google Scholar 

  17. Kiniwa, J., Yamashita, M.: A randomized 1-latent, time-adaptive and safe self-stabilizing mutual exclusion protocol. Parallel Processing Letters 16(1), 53–61 (2006)

    Article  MathSciNet  Google Scholar 

  18. Koutsoupias, E., Papadimitriou, C.H.: Worst-Case Equilibria. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  19. Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V.V. (eds.): Algorithmic game theory. Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

  20. Myerson, R.B.: Game theory: analysis of conflict. Harvard University Press (1991)

    Google Scholar 

  21. Nesterenko, M., Tixeuil, S.: Tolerance to unbounded byzantine faults. In: Proceedings of the 21st IEEE Symposium on Reliable Distributed Systems, pp. 22–29 (2002)

    Google Scholar 

  22. Yen, I.-L.: A highly safe self-stabilizing mutual exclusion algorithm. Information Processing Letters 57, 301–305 (1996)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kiniwa, J., Kikuta, K. (2009). Analysis of an Intentional Fault Which Is Undetectable by Local Checks under an Unfair Scheduler. In: Guerraoui, R., Petit, F. (eds) Stabilization, Safety, and Security of Distributed Systems. SSS 2009. Lecture Notes in Computer Science, vol 5873. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05118-0_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-05118-0_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05117-3

  • Online ISBN: 978-3-642-05118-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics