Skip to main content

A Metastability-Free Multi-synchronous Communication Scheme for SoCs

  • Conference paper
Stabilization, Safety, and Security of Distributed Systems (SSS 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5873))

Included in the following conference series:

Abstract

We propose a communication scheme for GALS systems with independent but approximately synchronized clock sources, which guarantees high-speed metastability-free communication between any two peers via bounded-size FIFO buffers. The proposed approach can be used atop of any multi-synchronous clocking system that guarantees a synchronization precision in the order of several clock cycles, like our fault-tolerant DARTS clocks. We determine detailed formulas for the required communication buffer size, and prove that this choice indeed guarantees metastability-free communication between correct peers, at maximum clock speed. We also describe a fast and efficient implementation of our scheme, and calculate the required buffer size for a sample test scenario. Experimental results confirm that the size lower bounds provided by our formulas are tight in this setting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Metra, C., Francescantonio, S.D., Mak, T., Ricco, B.: Implications of clock distribution faults and issues with screening them during manufacturing testing. IEEE Transactions on Computers 53(5), 531–546 (2004)

    Article  Google Scholar 

  2. Chapiro, D.M.: Globally-Asynchronous Locally-Syn-chronous Systems. PhD thesis, Stanford Univ. (October 1984)

    Google Scholar 

  3. Constantinescu, C.: Trends and challenges in VLSI circuit reliability. IEEE Micro. 23(4), 14–19 (2003)

    Article  Google Scholar 

  4. Borkar, S.: Designing reliable systems from unreliable components: the challenges of transistor variability and degradation. IEEE Micro. 25(6) (November 2005)

    Google Scholar 

  5. Mavis, D., Eaton, P.: SEU and SET modeling and mitigation in deep submicron technologies. In: Proceedings 45th Annual IEEE International Reliability physics symposium, April 2007, pp. 293–305 (2007)

    Google Scholar 

  6. Nicolaidis, M.: Design for soft error mitigation. IEEE Transactions on Device and Materials Reliability 5(3), 405–418 (2005)

    Article  Google Scholar 

  7. Fairbanks, S.: Method and apparatus for a distributed clock generator (2004)

    Google Scholar 

  8. Maza, M., Aranda, M.: Interconnected rings and oscillators as gigahertz clock distribution nets. In: Proceedings of the 13th ACM symposium on VLSI (2003)

    Google Scholar 

  9. Kleeman, L., Cantoni, A.: Metastable behavior in digital systems. IEEE Design & Test of Computers, 4–19 (December 1987)

    Google Scholar 

  10. Ginosar, R., Kol, R.: Adaptive synchronization. In: Computer Design: VLSI in Computers and Processors, ICCD 1998 (1998)

    Google Scholar 

  11. Panades, I.M., Greiner, A.: Bi-synchronous FIFO for Synchronous Circuit Communication Well Suited for Network-on-Chip in GALS Architectures. In: Proc. 1st Int. Symp. on Networks-on-Chip (NOCS 2007). IEEE CS Press, Los Alamitos (2007)

    Google Scholar 

  12. Dobkin, R., Ginosar, R., Sotiriou, C.: Data synchronization issues in gals socs. In: Asynchronous Circuits and Systems, ASYNC 2004 (2004)

    Google Scholar 

  13. Fuegger, M., Schmid, U., Fuchs, G., Kempf, G.: Fault-Tolerant Distributed Clock Generation in VLSI Systems-on-Chip. In: Proc. of the 6th European Dependable Computing Conference (EDCC-6). IEEE Comp. Soc. Press, Los Alamitos (2006)

    Google Scholar 

  14. Teehan, P., Greenstreet, M., Lemieux, G.: A survey and taxonomy of gals design styles. IEEE Design & Test of Computers (2007)

    Google Scholar 

  15. Semiat, Y., Ginosar, R.: Timing measurements of synchronization circuits. In: 9th Int. Symp. on Asynchronous Circuits and Systems, 2003. Proceedings (2003)

    Google Scholar 

  16. Widder, J., Schmid, U.: Achieving synchrony without clocks. Research Report 49/2005, Technische Universität Wien, Institut für Technische Informatik (2005)

    Google Scholar 

  17. Ferringer, M., Fuchs, G., Steininger, A., Kempf, G.: VLSI Implementation of a Fault-Tolerant Distributed Clock Generation. In: IEEE International Symposium on Defect and Fault-Tolerance in VLSI Systems (DFT 2006), October 2006, pp. 563–571 (2006)

    Google Scholar 

  18. Lamport, L.: Arbitration-free synchronization. Distrib. Comput. 16(2-3) (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Polzer, T., Handl, T., Steininger, A. (2009). A Metastability-Free Multi-synchronous Communication Scheme for SoCs. In: Guerraoui, R., Petit, F. (eds) Stabilization, Safety, and Security of Distributed Systems. SSS 2009. Lecture Notes in Computer Science, vol 5873. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05118-0_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-05118-0_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05117-3

  • Online ISBN: 978-3-642-05118-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics