Skip to main content

Brief Announcement: Robust Self-stabilizing Construction of Bounded Size Weight-Based Clusters

  • Conference paper
Stabilization, Safety, and Security of Distributed Systems (SSS 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5873))

Included in the following conference series:

Abstract

The clustering problem consists of partitioning network nodes into groups called clusters. Each cluster has a single clusterhead that acts as local coordinator of cluster.

A technique for designing solutions that tolerate transient faults is selfstabilization. Self-stabilizing protocols are attractive because they need not be initialized: they converge from any configuration to a legitimate one. Also, they are adaptive to topological changes. If the current configuration is inconsistent with the network topology, the self-stabilizing protocol eventually converges to a legitimate configuration. Nevertheless, self-stabilizing protocols do not guarantee any property during the convergence period. In addition, the convergence time may be proportional to the size of the network; particularly, in weight-based clustering protocols. In order to overcome these drawbacks, we are interested to the robust stabilization. Robust stabilization guarantees that from an illegitimate configuration, the system reaches quickly a safe configuration, in which the safety property is satisfied. The safety property has to be defined such that the system performs correctly its task in a safe configuration. During the convergence to a legitimate configuration, the safety property stays always verified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kamei, S., Kakugawa, H.: A self-stabilizing approximation for the minimum connected dominating set with safe convergence. In: Baker, T.P., Bui, A., Tixeuil, S. (eds.) OPODIS 2008. LNCS, vol. 5401, pp. 496–511. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  2. Johnen, C., Nguyen, L.H.: Robust self-stabilizing weight-based clustering algorithm. Theoretical Computer Science 410(6-7), 581–594 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  3. Chatterjee, M., Das, S.K., Turgut, D.: WCA: A weighted clustering algorithm for mobile ad hoc networks. Journal of Cluster Computing 5(2), 193–204 (2002)

    Article  Google Scholar 

  4. Johnen, C., Nguyen, L.H.: Self-stabilizing construction of bounded size clusters. In: ISPA 2008, pp. 43–50 (2008)

    Google Scholar 

  5. Tomoyuki, O., Shinji, I., Yoshiaki, K., Kenji, I., Kaori, M.: An adaptive maintenance of hierarchical structure in ad hoc networks and its evaluation. In: ICDCS 2002, pp. 7–13 (2002)

    Google Scholar 

  6. Johnen, C., Mekhaldi, F.: Robust self-stabilizing construction of bounded size weight-based clusters. Technical Report No 1518, LRI (2009), http://www.lri.fr/~bibli/Rapports-internes/2009/RR1518.pdf

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Johnen, C., Mekhaldi, F. (2009). Brief Announcement: Robust Self-stabilizing Construction of Bounded Size Weight-Based Clusters. In: Guerraoui, R., Petit, F. (eds) Stabilization, Safety, and Security of Distributed Systems. SSS 2009. Lecture Notes in Computer Science, vol 5873. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05118-0_61

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-05118-0_61

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05117-3

  • Online ISBN: 978-3-642-05118-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics