Skip to main content

Cascade Classifiers for Hierarchical Decision Systems

  • Chapter
Advances in Machine Learning I

Part of the book series: Studies in Computational Intelligence ((SCI,volume 262))

  • 2220 Accesses

Abstract

Hierarchical classifiers are usually defined as methods of classifying inputs into defined output categories. The classification occurs first on a low-level with highly specific pieces of input data. The classifications of the individual pieces of data are then combined systematically and classified on a higher level iteratively until one output is produced. This final output is the overall classification of the data. In this paper we follow a controlled devise type of approach. The initial group of classifiers is trained using all objects in an information system S partitioned by values of the decision attribute d at its all granularity levels (one classifier per level). Only values of the highest granularity level (corresponding granules are the largest) are used to split S into information sub-systems where each one is built by selecting objects in S of the same decision value. These sub-systems are used for training new classifiers at all granularity levels of its decision attribute. Next, we split each sub-system further by sub-values of its decision value. The obtained tree-structure with groups of classifiers assigned to each of its nodes is called a cascade classifier. Given an incomplete information system with a hierarchical decision attribute d, we consider the problem of training classifiers describing values of d at its lowest granularity level. Taking MIRAI database of music instrument sounds [16], as an example, we show that the confidence of such classifiers can be lower than the confidence of cascade classifiers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bruzzone, L., Cossu, R.: A Multiple Cascade-Classifier System for a Robust and Partially Unsupervised Updating of Land-Cover Maps, Technical Report DIT-02-026, Informatica e Telecomunicazioni, University of Trento, Italy (2002)

    Google Scholar 

  2. Dardzińska, A., Raś, Z.W.: Rule-Based Chase Algorithm for Partially Incomplete Information Systems. In: Tsumoto, S., Yamaguchi, T., Numao, M., Motoda, H. (eds.) AM 2003. LNCS (LNAI), vol. 3430, pp. 255–267. Springer, Heidelberg (2005)

    Google Scholar 

  3. Dardzińska, A., Raś, Z.W.: Chasing Unknown Values in Incomplete Information Systems. In: Lin, T.Y., Hu, X., Ohsuga, S., Liau, C. (eds.) Proceedings of ICDM 2003 Workshop on Foundations and New Directions of Data Mining, Melbourne, Florida, pp. 24–30. IEEE Computer Society, Los Alamitos (2003)

    Google Scholar 

  4. Duong, J., Emptoz, H.: Cascade Classifier: Design and Application to Digit Recognition. In: Proceedings of the Eighth International Conference on Document Analysis and Recognition, pp. 1065–1069. IEEE Computer Society, Los Alamitos (2005)

    Chapter  Google Scholar 

  5. Haskell, R.-E.: Design of hierarchical classifiers. In: Sherwani, N.A., Kapenga, J.A., de Doncker, E. (eds.) Great Lakes CS Conference 1989. LNCS, vol. 507, pp. 118–124. Springer, Heidelberg (1989)

    Chapter  Google Scholar 

  6. Huang, X., Li, S.Z., Wang, Y.: Learning with cascade for classification of non-convex manifolds. In: Proc. of CVPR Workshop on Face Processing in Video, FPIV 2004, Washington, DC (2004)

    Google Scholar 

  7. Im, S.: Privacy Aware Data Management and Chase. Fundamenta Informaticae 78(4), 507–524 (2007)

    MATH  MathSciNet  Google Scholar 

  8. Kostek, B., Czyzewski, A.: Representing Musical Instrument Sounds for Their Automatic Classification. J. Audio Eng. Soc. 49(9), 768–785 (2001)

    Google Scholar 

  9. Kostek, B., Wieczorkowska, A.: Parametric Representation of Musical Sounds. Archive of Acoustics 22(1), 3–26 (1997)

    Google Scholar 

  10. Levene, M., Loizou, G.: Semantics for null extended nested relations. ACM Transactions on Database Systems (TODS) 18(3), 414–459 (1993)

    Article  MathSciNet  Google Scholar 

  11. Lu, C., Drew, M.S.: Construction of a hierarchical classifier schema using a combination of text-based and image-based approaches. In: SIGIR 2001 Proceedings, pp. 331–336. ACM Publications, New York (2001)

    Google Scholar 

  12. Martin, K.D., Kim, Y.E.: Musical instrument identification: a pattern-recognition approach. In: Proceedings of 136th Meeting of the Acoustical Society of America, Norfolk, VA (October 1998)

    Google Scholar 

  13. Michalski, R.S.: Attributional Ruletrees: A New Representation for AQ Learning, Reports of the Machine Learning and Inference Laboratory, MLI 02-1, George Mason University, Fairfax, VA (2002)

    Google Scholar 

  14. Pawlak, Z.: Information systems - theoretical foundations. Information Systems Journal 6, 205–218 (1991)

    Google Scholar 

  15. Raś, Z.W., Dardzińska, A., Zhang, X.: Cooperative Answering of Queries based on Hierarchical Decision Attributes. CAMES Journal, Polish Academy of Sciences, Institute of Fundamental Technological Research 14(4), 729–736 (2007)

    Google Scholar 

  16. Raś, Z.W., Zhang, X., Lewis, R.: MIRAI: Multi-hierarchical, FS-tree based music information retrieval system. In: Kryszkiewicz, M., Peters, J.F., Rybiński, H., Skowron, A. (eds.) RSEISP 2007. LNCS (LNAI), vol. 4585, pp. 80–89. Springer, Heidelberg (2007)

    Google Scholar 

  17. Yang, C.: The MACSIS Acoustic Indexing Framework for Music Retrieval: An Experimental Study. In: Proceedings of ISMIR 2002, pp. 53–62 (2002)

    Google Scholar 

  18. Zhang, X., Raś, Z.W., Dardzińska, A.: Discriminant Feature Analysis for Music Timbre Recognition and Automatic Indexing. In: Raś, Z.W., Tsumoto, S., Zighed, D.A. (eds.) MCD 2007. LNCS (LNAI), vol. 4944, pp. 104–115. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Raś, Z.W., Dardzińska, A., Jiang, W. (2010). Cascade Classifiers for Hierarchical Decision Systems. In: Koronacki, J., Raś, Z.W., Wierzchoń, S.T., Kacprzyk, J. (eds) Advances in Machine Learning I. Studies in Computational Intelligence, vol 262. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05177-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-05177-7_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05176-0

  • Online ISBN: 978-3-642-05177-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics