Abstract
We propose an improved inductive learning method to derive classification rules correctly describing (at least) most of the positive examples and do not correctly describe (at least) most of the negative examples. We start with a pre-analysis of data to assign higher weights to those values of attributes which occur more often in the positive than in the negative examples. The inductive learning problem is represented as a modification of the set covering problem which is solved by an integer programming based algorithm using elements of a greedy algorithm or a genetic algorithm, for efficiency. The results are very encouraging and are illustrated on a thyroid cancer data set.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Balas, E.: Cutting planes from conditional bounds: a new approach to set covering. Mathematical Programming Study 12, 19–36 (1980)
Balas, E., Ho, A.: Set covering algorithms using cutting planes, heuristics and sub gradient optimisation: A computation study. Mathematical Programming 12, 37–60 (1980)
Balas, E., Padberg, M.W.: Set partitioning - A survey. In: Christofides, N. (ed.) Combinatorial Optimisation. Wiley, New York (1979)
Beasley, J.E.: An algorithm for set covering problem. European Journal of Operational Research 31, 85–93 (1987)
Beasley, J.E.: A Lagrangian heuristic for set covering problem. Naval Research Logistics Quarterly 37, 151–164 (1990)
Beasley, J.E.: A genetic algorithm for the set covering problem. European Journal of Operational Research 94, 392–404 (1996)
Beasley, J.E., Jornsten, K.: Enhancing an algorithm for set covering problem. European Journal of Operational Research 58, 293–300 (1992)
Christofides, N., Korman, S.: A computational survey of methods for the set covering problem. Management Science 21, 591–599 (1975)
Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operational Research 4(3), 233–235 (1979)
Cios, K.J., Liu, N.: An algorithm which learns multiple covers via integer linear programming. Part I - The CLILP2 Algorithm. Kybernetes 24, 29–50 (1995)
Cios, K.J., Wedding, D.K., Liu, N.: CLIP3: cover learning using integer programming. Kybernetes 26, 513–536 (1997)
Cios, K.J., Kurgan, L.: CLIP4: Hybrid inductive machine learning algorithm that generates inequality rules. Information Sciences 163, 37–83 (2004)
Etcheberry, J.: The set covering problem: A new implicit enumeration algorithm. Operations Research 25, 760–772 (1977)
Grossman, T., Wool, A.: Computational experience with approximation algorithms for the set covering problem. Working paper, Theoretical Division and CNLS, Los Alamos National Laboratory (1995)
Homaifar, A., Lai, S., Qi, X.: Constrained optimization via genetic algorithms. Simulation 62, 242–254 (1994)
Iwański, C., Szkatuła, G.: Inductive learning supported by integer programming. Computers and Artificial Intelligence 10, 57–66 (1991)
Johnson, D.A.: Approximation algorithms for combinatorial problems. Journal of Computer System Science 9, 256–278 (1974)
Kacprzyk, J., Iwański, C.: Fuzzy logic with linguistic quantifiers in inductive learning. In: Zadeh, L.A., Kacprzyk, J. (eds.) Fuzzy Logic for the Management of Uncertainty, pp. 465–478. Wiley, New York (1992)
Kacprzyk, J., Szkatuła, G.: Machine learning from examples under errors in data. In: Bouchon-Meunier, B., Yager, R.R., Zadeh, L.A. (eds.) IPMU 1994. LNCS, vol. 945, pp. 1047–1051. Springer, Heidelberg (1994)
Kacprzyk, J., Szkatuła, G.: An algorithm for learning from erroneous and incorrigible examples. International Journal of Intelligent Systems 11, 565–582 (1996)
Kacprzyk, J., Szkatuła, G.: An improved inductive learning algorithm with a preanalysis of data. In: Raś, Z.W., Skowron, A. (eds.) ISMIS 1997. LNCS, vol. 1325, pp. 157–166. Springer, Heidelberg (1997)
Kacprzyk, J., Szkatuła, G.: Deriving IF-THEN rules for intelligent decision support via inductive learning. In: Kasabov, N., et al. (eds.) Progress in Connectionist-Based Information Systems (Proceedings of ICONIP 1997, ANZIIS 1997 and ANNES 1997 Conference), Dunedin, New Zealand, Singapore, vol. 2, pp. 818–821. Springer, Heidelberg (1997b)
Kacprzyk, J., Szkatuła, G.: IP1 - An improved inductive learning procedure with a preprocessing of data. In: Proceedings of IDEAL 1998, Hong Kong, pp. 385–392. Springer, Heidelberg (1998)
Kacprzyk, J., Szkatuła, G.: An inductive learning algorithm with a preanalysis of data. International Journal of Knowledge - Based Intelligent Engineering Systems 3, 135–146 (1999)
Kacprzyk, J., Szkatuła, G.: An integer programming approach to inductive learning using genetic and greedy algorithms. In: Jain, L.C., Kacprzyk, J. (eds.) New Learning Paradigms in Soft Computing, pp. 322–366. Physica-Verlag, Heidelberg (2002a)
Kacprzyk, J., Szkatuła, G.: An integer programming approach to inductive learning using genetic algorithm. In: Proceedings of CEC 2002 - The 2002 Congress on Evolutionary Computation, Honolulu, Hawaii, pp. 181–186 (2002b)
Kacprzyk, J., Szkatuła, G.: A softened formulation in inductive learning and application to coronary disease data. In: Atanassov, K.T., Kacprzyk, J., Krawczak, M., Szmidt, E. (eds.) Issues in the Representation and Processing of Uncertain and Imprecise Information. Fuzzy Sets, Intuitionistic Fuzzy Sets, Generalized Nets, and Related Topics, pp. 181–197. AOW EXIT, Warszawa (2005a)
Kacprzyk, J., Szkatula, G.z.: A softened formulation of inductive learning and its use for coronary disease data. In: Hacid, M.-S., Murray, N.V., Raś, Z.W., Tsumoto, S. (eds.) ISMIS 2005. LNCS (LNAI), vol. 3488, pp. 200–209. Springer, Heidelberg (2005)
Kacprzyk, J., Szkatuła, G.z.: An inductive learning algorithm with a partial completeness and consistence via a modified set covering problem. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds.) ICANN 2005. LNCS, vol. 3697, pp. 661–666. Springer, Heidelberg (2005)
Michalski, R.S.: Variable valued logic: system VLl. In: Proc. of 1974 International Symposium on Multiple Valued Logic and Pattern Recognition, West Virginia University, Morgantown, pp. 323–346 (1974)
Michalski, R.S.: A theory and methodology of inductive learning. In: Michalski, R., Carbonell, J., Mitchell, T.M. (eds.) Machine Learning. Tioga Press (1983)
Michalski, R.S., Mozetic, I., Hong, J., Lovrac, N.: The multi-purpose incremental learning system AQ15 and its testing application to three medical domains. In: Proceedings of 5th National Conference on Artificial Intelligence, Philadelphia, pp. 1041–1045. Morgan Kaufmann, San Francisco (1986)
Nakache, J.P., Asselain, B.: Medical data set proposed for the workshop on data analysis. In: EIASM Workshop (April 1983)
Paixao, J.: Algorithms for large scale set covering problems. PhD. Thesis, Department of Management Science, Imperial College (1984)
Powell, D., Skolnick, M.M.: Using genetic algorithms in engineering design optimization with non-linear constraints. In: Forrest, S. (ed.) Proceedings of the Fifth International Conference on Genetic Algorithms, pp. 424–430. Morgan Kaufmann, San Mateo (1993)
Schoenauer, M., Xanthakis, S.: Constrained GA optimization. In: Forrest, S. (ed.) Proceedings of the Fifth International Conference on Genetic Algorithms, pp. 573–580. Morgan Kaufmann, San Mateo (1993)
Szkatuła, G.: Machine learning from examples under errors in data (In Polish), Ph.D. thesis, SRI PAS Warsaw, Poland (1996)
Szkatuła, G., Kacprzyk, J.: An inductive learning algorithm with a partial completeness and consistency. In: Draminski, M., Grzegorzewski, P., Trojanowski, T., Zadrozny, S. (eds.) Issues in intelligent systems. Models and techniques, pp. 229–246. AOW EXIT, Warszawa (2005)
Vercellis, C.: A probabilistic analysis of the set covering problem. Annals of Operational Research 1, 255–271 (1984)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Kacprzyk, J., Szkatuła, G. (2010). Inductive Learning: A Combinatorial Optimization Approach. In: Koronacki, J., Raś, Z.W., Wierzchoń, S.T., Kacprzyk, J. (eds) Advances in Machine Learning I. Studies in Computational Intelligence, vol 262. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05177-7_4
Download citation
DOI: https://doi.org/10.1007/978-3-642-05177-7_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-05176-0
Online ISBN: 978-3-642-05177-7
eBook Packages: EngineeringEngineering (R0)