Abstract
Learning classifiers of spatial data presents several issues, such as the heterogeneity of spatial objects, the implicit definition of spatial relationships among objects, the spatial autocorrelation and the abundance of unlabelled data which potentially convey a large amount of information. The first three issues are due to the inherent structure of spatial units of analysis, which can be easily accommodated if a (multi-)relational data mining approach is considered. The fourth issue demands for the adoption of a transductive setting, which aims to make predictions for a given set of unlabelled data. Transduction is also motivated by the contiguity of the concept of positive autocorrelation, which typically affect spatial phenomena, with the smoothness assumption which characterize the transductive setting. In this work, we investigate a relational approach to spatial classification in a transductive setting. Computational solutions to the main difficulties met in this approach are presented. In particular, a relational upgrade of the naïve Bayes classifier is proposed as discriminative model, an iterative algorithm is designed for the transductive classification of unlabelled data, and a distance measure between relational descriptions of spatial objects is defined in order to determine the k-nearest neighbors of each example in the dataset. Computational solutions have been tested on two real-world spatial datasets. The transformation of spatial data into a multi-relational representation and experimental results are reported and commented.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Appice, A., Ceci, M., Lanza, A., Lisi, F.A., Malerba, D.: Discovery of spatial association rules in georeferenced census data: A relational mining approach. Intelligent Data Analysis 7(6), 541–566 (2003)
Bennett, K.P.: Combining support vector and mathematical programming methods for classification. In: Schölkopf, B., Burges, C.J.C., Smola, A.J. (eds.) Advances in kernel methods: support vector learning, pp. 307–326. MIT Press, Cambridge (1999)
Ceci, M., Appice, A.: Spatial associative classification: propositional vs. structural approach. Journal of Intelligent Information Systems 27(3), 191–213 (2006)
Ceci, M., Appice, A., Malerba, D.: Mr-SBC: A multi-relational naïve bayes classifier. In: Lavrač, N., Gamberger, D., Todorovski, L., Blockeel, H. (eds.) PKDD 2003. LNCS (LNAI), vol. 2838, pp. 95–106. Springer, Heidelberg (2003)
Ceci, M., Appice, A., Malerba, D.: Discovering emerging patterns in spatial databases: A multi-relational approach. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) PKDD 2007. LNCS (LNAI), vol. 4702, pp. 390–397. Springer, Heidelberg (2007)
Chapelle, O., Schölkopf, B., Zien, A. (eds.): Semi-supervised learning. MIT Press, Cambridge (2006)
Chen, Y., Wang, G., Dong, S.: Learning with progressive transductive support vector machines. Pattern Recognition Letters 24, 1845–1855 (2003)
De Raedt, L.: Interactive theory revision. Academic Press, London (1992)
De Raedt, L.: Attribute-value learning versus inductive logic programming: the missing links. In: Page, D.L. (ed.) ILP 1998. LNCS, vol. 1446, pp. 1–8. Springer, Heidelberg (1998)
Džeroski, L., Lavrač, N.: Relational data mining. Springer, Berlin (2001)
Egenhofer, M.J., Franzosa, R.: Point-set topological spatial relations. International Journal of Geographical Information Systems 5(2), 161–174 (1991)
Esposito, F., Malerba, D., Tamma, V., Bock, H.: Similarity and dissimilarity. In: Bock, H.H., Diday, E. (eds.) Analysis of Symbolic Data: Exploratory Methods for Extracting Statistical Information from Complex Data, pp. 139–152. Springer, Heidelberg (2000)
Ester, M., Gundlach, S., Kriegel, H., Sander, J.: Database primitives for spatial data mining. In: Proceedings of the International Conference on Database in Office, Engineering and Science, BTW 1999, Freiburg, Germany (1999)
Ester, M., Kriegel, H., Sander, J.: Spatial data mining: A database approach. In: Scholl, M.O., Voisard, A. (eds.) SSD 1997. LNCS, vol. 1262, pp. 47–66. Springer, Heidelberg (1997)
Frank, A.: Spatial concepts, geometric data models, and geometric data structures. Computers and Geosciences 18(4), 409–417 (1992)
Gammerman, A., Azoury, K., Vapnik, V.: Learning by transduction. In: Proc. of the 14th Annual Conference on Uncertainty in Artificial Intelligence, UAI 1998, pp. 148–155. Morgan Kaufmann, San Francisco (1998)
Getoor, L.: Multi-relational data mining using probabilistic relational models: research summary. In: Knobbe, A., Van der Wallen, D.M.G. (eds.) Proceedings of the 1st Workshop on Multi-Relational Data Mining, Freiburg, Germany (2001)
Góra, G., Wojna, A.: RIONA: A classifier combining rule induction and k-NN method with automated selection of optimal neighbourhood. In: Elomaa, T., Mannila, H., Toivonen, H. (eds.) ECML 2002. LNCS (LNAI), vol. 2430, pp. 111–123. Springer, Heidelberg (2002)
Han, J., Kamber, M., Tung, A.K.H.: Spatial clustering methods in data mining. In: Han, J., Kamber, M. (eds.) Geographic Data Mining and Knowledge Discovery, pp. 188–217. Taylor and Francis, Abington (2001)
Joachims, T.: Transductive inference for text classification using support vector machines. In: Proceedings of the 16th International Conference on Machine Learning (ICML 1999), pp. 200–209. Morgan Kaufmann, San Francisco (1999)
Joachims, T.: Transductive learning via spectral graph partitioning. In: Proc. of the 20th International Conference on Machine Learning, ICML 2003. Morgan Kaufmann, San Francisco (2003)
Klösgen, W., May, M.: Spatial subgroup mining integrated in an object-relational spatial database. In: Elomaa, T., Mannila, H., Toivonen, H. (eds.) PKDD 2002. LNCS (LNAI), vol. 2431, pp. 275–286. Springer, Heidelberg (2002)
Koperski, K.: Progressive Refinement Approach to Spatial Data Mining. PhD thesis, Computing Science, Simon Fraser University, British Columbia, Canada (1999)
Koperski, K., Han, J.: Discovery of spatial association rules in geographic information databases. In: Egenhofer, M.J., Herring, J.R. (eds.) SSD 1995. LNCS, vol. 951, pp. 47–66. Springer, Heidelberg (1995)
Krogel, M., Rawles, S., Zelezny, F., Flach, P., Lavrac, N., Wrobel, S.: Comparative evaluation of approaches to propositionalization. In: Horváth, T., Yamamoto, A. (eds.) ILP 2003. LNCS (LNAI), vol. 2835, pp. 197–214. Springer, Heidelberg (2003)
Krogel, M.-A., Scheffer, T.: Multi-relational learning, text mining, and semi-supervised learning for functional genomics. Machine Learning 57(1-2), 61–81 (2004)
Kukar, M., Kononenko, I.: Reliable classifications with machine learning. In: Elomaa, T., Mannila, H., Toivonen, H. (eds.) ECML 2002. LNCS (LNAI), vol. 2430, pp. 219–231. Springer, Heidelberg (2002)
Lavrač, N., Džeroski, S.: Inductive logic programming: techniques and applications. Ellis Horwood, Chichester (1994)
Legendre, P.: Spatial autocorrelation: Trouble or new paradigm. Ecology 74, 1659–1673 (1993)
Malerba, D.: Learning recursive theories in the normal ILP setting. Fundamenta Informaticae 57(1), 39–77 (2003)
Malerba, D., Appice, A., Ceci, M.: A data mining query language for knowledge discovery in a geographical information system. In: Meo, R., Lanzi, P.L., Klemettinen, M. (eds.) Database Support for Data Mining Applications. LNCS (LNAI), vol. 2682, pp. 95–116. Springer, Heidelberg (2004)
Malerba, D., Ceci, M., Appice, A.: Mining model trees from spatial data. In: Jorge, A.M., Torgo, L., Brazdil, P.B., Camacho, R., Gama, J. (eds.) PKDD 2005. LNCS (LNAI), vol. 3721, pp. 169–180. Springer, Heidelberg (2005)
Malerba, D., Esposito, F., Lanza, A., Lisi, F.A., Appice, A.: Empowering a GIS with inductive learning capabilities: The case of INGENS. Journal of Computers, Environment and Urban Systems 27, 265–281 (2003)
McIver, D., Friedl, M.: Estimating pixel-scale land cover classification confidence using nonparametric machine learning methods. IEEE Transactions on Geoscience and Remote Sensing 39(9), 1959–1968 (2001)
Michalski, R.S.: A theory and methodology of inductive learning. Artificial Intelligence 20(2), 111–161 (1983)
Mitchell, T.: Machine Learning. McGraw Hill, New York (1997)
Muggleton, S.: Inductive logic programming. Academic Press, London (1992)
Mukerjee, A., Joe, G.: A qualitative model for space. In: Proceedings of AAAI 1990, pp. 721–727. AAAI Press, Menlo Park (1990)
Robinson, J.A.: A machine oriented logic based on the resolution principle. Journal of the ACM 12, 23–41 (1965)
Sander, J., Ester, M., Kriegel, H., Xu, X.: Density-based clustering in spatial databases: The algorithm gdbscan and its applications. Data Mining and Knowledge Discovery 2(2), 169–194 (1998)
Seeger, M.: Learning with labeled and unlabeled data. Technical report, University of Edinburgh (2001)
Shekhar, S., Schrater, P.R., Vatsavai, R.R., Wu, W., Chawla, S.: Spatial contextual classification and prediction models for mining geospatial data. IEEE Transactions on Multimedia 4(2), 174–188 (2002)
Shekhar, S., Vatsavai, R., Chawla, S.: Spatial classification and prediction models for geospatial data mining. In: Miller, H.J., Han, J. (eds.) Geographic Data Mining and Knowledge Discovery, 2nd edn., pp. 117–147. Taylor & Francis, Abington (2009)
Shekhar, S., Zhang, P., Huang, Y.: Spatial data mining. In: Maimon, O., Rokach, L. (eds.) The Data Mining and Knowledge Discovery Handbook, pp. 833–851. Springer, Heidelberg (2005)
Taskar, B., Segal, E., Koller, D.: Probabilistic classification and clustering in relational data. In: Nebel, B. (ed.) Proceedings of the Seventeenth International Joint Conference on Artificial Intelligence (IJCAI 2001), pp. 870–878 (2001)
Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995)
Vapnik, V.: Statistical Learning Theory. Wiley, New York (1998)
Wessel, M.: Some practical issues in building a hybrid deductive geographic information system with a dl component. In: Proceedings of the 10th International Workshop on Knowledge Representation meets Databases (KRDB 2003), Hamburg, Germany, September 15-16. CEUR Workshop Proceedings, vol. 79. CEUR-WS.org (2003)
Wettschereck, D.: A study of Distance-Based Machine Learning Algorithms. PhD thesis, Oregon State University (1994)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Ceci, M., Appice, A., Malerba, D. (2010). Transductive Learning for Spatial Data Classification. In: Koronacki, J., Raś, Z.W., Wierzchoń, S.T., Kacprzyk, J. (eds) Advances in Machine Learning I. Studies in Computational Intelligence, vol 262. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05177-7_9
Download citation
DOI: https://doi.org/10.1007/978-3-642-05177-7_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-05176-0
Online ISBN: 978-3-642-05177-7
eBook Packages: EngineeringEngineering (R0)