
 

 

Abstract— Intrinsic motivation is a central mechanism that guides spontaneous explora-

tion and learning in humans. It fosters incremental and progressive sensorimotor and cogni-

tive development by pushing exploration of activities of intermediate complexity given the 

current state of capabilities. This chapter presents and studies two computational intrinsic 

motivation systems that share similarities with human intrinsic motivation systems, IAC 

and R-IAC, that aim at self-organizing and efficiently guiding exploration for sensorimotor 

learning in robots. IAC was initially introduced to model the qualitative formation of deve-

lopmental motor stages of increasing complexity, as shown in the Playground Experiment 

which we will outline.  In this chapter, we argue that IAC and other intrinsically motivated 

learning heuristics could also be viewed as active learning algorithms that are particularly 

suited for learning forward models in unprepared sensorimotor spaces with large unlearna-

ble subspaces. Then, we introduce a novel formulation of IAC, called R-IAC, and show that 

its performances as an intrinsically motivated active learning algorithm are far superior to 

IAC in a complex sensorimotor space where only a small subspace is ―interesting‖, i.e.  nei-

ther unlearnable nor trivial. We also show results in which the learnt forward model is 

reused in a control scheme. Finally, an open-source accompanying software containing 

these algorithms as well as tools to reproduce all the experiments in simulation presented in 

this paper is made publicly available. 

 
Index Terms— active learning, intrinsically motivated learning, exploration, developmen-

tal robotics, artificial curiosity, sensorimotor learning.  

 

1.1 Intrinsically Motivated Exploration and Learning 

 

Developmental robotics approaches are studying mechanisms that may allow a 

robot to continuously discover and learn new skills in unknown environments and 

in a life-long time scale [1], [2]. A main aspect is the fact that the set of these 

skills and their functions are at least partially unknown to the engineer who con-

ceive the robot initially, and are also task-independent. Indeed, a desirable feature 

is that robots should be capable of exploring and developing various kinds of 
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skills that they may re-use later on for tasks that they did not foresee. This is what 

happens in human children, and this is also why developmental robotics shall im-

port concepts and mechanisms from human developmental psychology.  

1.1.1 The problem of exploration in open-ended learning 

Like children, the ―freedom‖ that is given to developmental robots to learn an 

open set of skills also poses a very important problem: as soon as the set of motors 

and sensors is rich enough, the set of potential skills become extremely large and 

complicated. This means that on the one hand, it is impossible to try to learn all 

skills that may potentially be learnt because there is not enough time to physically 

practice all of them.  Furthermore, there are many skills or goals that the 

child/robot could imagine but never be actually learnable, because they are either 

too difficult or just not possible (for example, trying to learn to control the weather 

by producing gestures is hopeless). This kind of problem is not at all typical of the 

existing work in machine learning, where usually the ―space‖ and the associated 

―skills‖ to be learnt and explored are well-prepared by a human engineer. For ex-

ample, when learning hand-eye coordination in robots, the right input and output 

spaces (e.g. arm joint parameters and visual position of the hand) are typically 

provided as well as the fact that hand-eye coordination is an interesting skill to 

learn. But a developmental robot is not supposed to be provided with the right 

subspaces of its rich sensorimotor space and with their association with appropri-

ate skills: it would for example have to discover that arm joint parameters and vis-

ual position of the hand are related in the context of a certain skill (which we call 

hand-eye coordination but which it has to conceptualize by itself) and in the mid-

dle of a complex flow of values in a richer set of sensations and actions.  

1.1.2 Intrinsic motivations  

Developmental robots, like humans, have a sharp need for mechanisms that may 

drive and self-organize the exploration of new skills, as well as identify and organ-

ize useful sub-spaces in its complex sensorimotor experiences. Psychologists have 

identified two broad families of guidance mechanisms which drive exploration in 

children:  

1) Social learning, which exists in different forms such as stimulus enhance-

ment, emulation, imitation or demonstration, and which many groups try to 

implement in robots [e.g. 3,4,5,6,7,8,9,10,11,12,13,14]; 

2) Internal guiding mechanisms, also studied by many robotics research 

groups (e.g. see [15,16,17,18,19,20]) and in particular intrinsic motivation, 

responsible of spontaneous exploration and curiosity in humans, which is 

the mechanisms underlying the algorithms presented in this paper.  

 Intrinsic motivations are mechanisms that guide curiosity-driven exploration, 

that were initially studied in psychology [21]-[23] and are now also being ap-

proached in neuroscience [24]-[26]. Machine learning and robotics researchers 



3 

have proposed that such mechanism might be crucial for self-organizing develop-

mental trajectories as well as for guiding the learning of general and reusable 

skills in machines and robots [27,28]. A large diversity or approaches for opera-

tionalizing intrinsic motivation have been presented in the literature [e.g. 

29,30,31,32,33,34,28,27,35], and see [27] for a general overview. Several experi-

ments have been conducted in real-world robotic setups, such as in [27,36,34] 

where an intrinsic motivation system was shown to allow for the progressive dis-

covery of skills of increasing complexity, such as in the Playground Experiment 

that we will present in section 4. In these experiments, the focus was on the study 

of how developmental stages could self-organize into a developmental trajectory 

of increasing complexity without a direct pre-specification of these stages and 

their number. As we will explain in section 4, this can lead to stimulating models 

of the self-organization of structured developmental trajectories with both univer-

sal tendencies and diversity as observed in humans [60]. Furthermore, in this 

chapter, we argue that such intrinsic motivation systems can be used as efficient 

active learning algorithms. With this view, we present a novel system, called R-

IAC, which improves IAC over a number of features. Through several experi-

ments, we will show that it can be used as an efficient active learning algorithm to 

learn forward and inverse models in complex unprepared sensorimotor spaces 

with unlearnable subspaces. 

 

1.2 IAC and R-IAC for Intrinsically Motivated Active Learning 

 

1.2.1 Developmental Active Learning 

 

In IAC, intrinsic motivation is implemented as a heuristics which pushes a robot 

to explore sensorimotor activities for which learning progress is maximal, i.e. sub-

regions of the sensorimotor space where the predictions of the learnt forward 

model improve fastest [27]. Thus, this mechanism regulates actively the growth of 

complexity in sensorimotor exploration, and can be conceptualized as a develop-

mental active learning algorithm. This heuristics shares properties with statistical 

techniques in optimal experiment design (e.g. [37]) where exploration is driven by 

expected information gain, as well as with attention and motivation mechanisms 

proposed in the developmental psychology literature (e.g. [22], [38], or see [23] 

for a review) where it has been proposed that exploration is preferentially focused 

on activities of intermediate difficulty or novelty [39,40], but differs significantly 

from many active learning heuristics in machine learning in which exploration is 

directed towards regions where the learnt model is maximally uncertain or where 

predictions are maximally wrong (e.g. [41, 42], see [27] for a review). As argued 

in [27], developmental robots are typically faced with large sensorimotor spaces 

which cannot be entirely learnt (because of time limits among other reasons) 

and/or in which subregions are not learnable (potentially because it is too compli-

cated for the learner, or because there are no correlations between the input and 
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output variables, see examples in the experiment section and in [27]). In these sen-

sorimotor spaces, exploring zones of maximal uncertainty or unpredictability is 

bound to be an inefficient strategy since it would direct exploration towards sub-

spaces in which there are no learnable correlations, while a heuristics based on 

learning progress allows to avoid unlearnable parts as well as to focus exploration 

on zones of gradually increasing complexity. 

 

In [27, 34], experiments such as the Playground Experiment described in section 

4 showed how IAC can allow an AIBO robot, equipped with a set of paramete-

rized motor primitives (in a 5 DOF motor space), as well as a set of perceptual 

primitives (in a 3 DOF perceptual space), to self-organize a developmental trajec-

tory in which a variety of affordances uses of the motor primitives where learnt in 

spite of not having been specified initially. In [36], a slightly modified version of 

IAC allowed an AIBO robot, equipped with parameterized central pattern genera-

tors (CPG’s) in a 24 DOF motor space and 3 DOF perceptual space, to learn a va-

riety of locomotion skills. Yet, these previous results focused on qualitative prop-

erties of the self-organized developmental trajectories, and IAC was not optimized 

for efficient active learning per se. 

 

Here, we present a novel formulation of IAC, called Robust-IAC (R-IAC), and 

show that it can efficiently allow a robot to learn actively, fast and correctly for-

ward and inverse kinematic models in an unprepared sensorimotor space. As we 

will explain, R-IAC introduces four main advances compared to IAC: 

 Probabilistic action selection: instead of choosing actions to explore 

the zone of maximal learning progress at a given moment in time (ex-

cept in the random action selection mode), R-IAC explores actions on 

sensorimotor subregions probabilistically chosen based on their indivi-

dual learning progress; 

 Multi-resolution monitoring of learning progress: in R-IAC, when 

sensorimotor regions are split into subregions, parent regions are kept 

and one continues to monitor learning progress in them, and they conti-

nue to be eligible regions for action selection. As a consequence, lear-

ning progress is monitored simultaneously at various regions scales, as 

opposed to IAC where it was monitored only in child regions and thus 

at increasing small scales; 

 A new region splitting mechanism that is based on the direct optimi-

zation of learning progress dissimilarity among regions; 

 The introduction of a third exploration mode hybridizing learning 

progress heuristics with more classic heuristics based on the exploration 

of zones of maximal unpredictability;   
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1.2.2 Prediction Machine and Analysis of Error Rate 

 

We consider a robot as a system with motor/actions channels M and sen-

sory/state channels S. M and S can be low-level such as torque motor values or 

touch sensor values, or higher level such as a ―go forward one meter‖ motor 

command or ―face detected‖ visual sensor‖. Furthermore, S can correspond to in-

ternal sensors measuring the internal state of the robot or encoding past values of 

the sensors. Real valued action/motor parameters are represented as a vector 𝐌(𝐭), 

and sensors, as 𝐒(𝐭), at a time t. 𝐒𝐌(𝐭) represents a sensorimotor context, i.e. the 

concatenation of both motors and sensors vectors.  

 

We also consider a Prediction Machine PM (Fig. 1), as a system based on a 

learning algorithm (neural networks, KNN, etc.), which is able to create a forward 

model of a sensorimotor space based on learning examples collected through self-

determined sensorimotor experiments. Experiments are defined as series of ac-

tions, and consideration of sensations detected after actions are performed. An ex-

periment is represented by the set (𝐒𝐌(𝐭), 𝐒(𝐭 + 𝟏)), and denotes the sensory/state 

consequence S(t+1)  that is observed when actions encoded in M(t) are performed 

in the sensory/state context S(t). This set is called a ―learning exemplar‖. After 

each trial, the prediction machine PM gets this data and incrementally updates the 

forward model that it is encoding, i.e. the robot incrementally increases its know-

ledge of the sensorimotor space. In this update process, PM is able to compare, for 

a given context  𝐒𝐌(𝒕), differences between predicted sensations 𝐒 (𝒕 + 𝟏) (esti-

mated using the created model), and real consequences S(𝒕 + 𝟏). It is then able to 

produce a measure of error 𝒆(𝒕 + 𝟏), which represents the quality of the model for 

sensorimotor context 𝐒𝐌(𝒕). This is summarized in figure 1.  

 

 
 

Then, we consider a module able to analyze learning evolutions over time, called 

Prediction Analysis Machine PAM, Fig. 2. In a given subregion 𝑹𝒏 of the senso-

rimotor space (which we will define below), this system monitors the evolution of 

 
 

Fig. 1. The prediction learning machine (e.g. a neural network, an SVM, or  Gaus-

sian process regression based algorithm)  
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errors in predictions made my PM by computing its derivative, i.e. the learning 

progress, 𝑳𝑷𝒏 =  𝑒𝑁 − 𝑒𝐹 in this particular region over a sliding time window (see 

Fig 2). 𝑳𝑷𝒏 is then used as a measure of interestingness used in the action selec-

tion scheme outlined below. The more a region is characterized by learning 

progress, the more it is interesting, and the more the system will perform experi-

ments and collect learning exemplars that fall into this region. Of course, as explo-

ration goes on, the learnt forward model becomes better in this region and learning 

progress might decrease, leading to a decrease in the interestingness of this region. 

 

To precisely represent the learning behavior inside the whole sensorimotor space 

and differentiate its various evolutions in various subspaces/subregions, different 

PAM modules, each associated to a different subregion 𝑅𝑖  of the sensorimotor 

space, need to be built. Therefore, the learning progress 𝑳𝑷𝒊 provided as the out-

put values of each PAM becomes representative of the interestingness of the asso-

ciated region  𝑹𝒊. Initially, the whole space is considered as one single region 𝑹𝟎, 

associated to one PAM, which will be progressively split into subregions with 

their own PAM as we will now describe.  

1.2.3 The Split Machine 

 

The Split Machine SpM (Fig. 3) possesses the capacity to memorize all the expe-

rimented learning exemplars (𝐒𝐌(𝐭), 𝐒(𝐭 + 𝟏)), and the corresponding errors val-

ues 𝒆(𝒕 + 𝟏). It is both responsible for identifying the region and PAM corres-

ponding to a given SM(t), but also responsible of splitting (or creating in R-IAC 

where parent regions are kept in use) sub-regions from existing regions.  

 

 

 
 

Fig. 2. Internal mechanism of the Prediction Analysis Machine 𝐏𝐀𝐌𝒏 associated 

to a given subregion 𝑹𝒏 of the sensorimotor space. This module considers errors 

detected in prediction by the Prediction Machine PM, and returns a value repre-
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sentative of the learning progress in the region. Learning progress is the derivative 

of errors analyzed between a far and a near past  in a fixed length sliding window. 

 

 

 

 

1) Region Implementation 

 

We use a tree representation to store the list of regions as shown in Fig. 4. The 

main node represents the whole space, and leafs are subspaces. 𝐒(𝐭) and 𝐌(𝐭) are 

here normalized into [0;1]n. The main region (first node), called 𝑅0, represents the 

whole sensorimotor space. Each region stores all collected exemplars that it cov-

ers. When a region contains more than a fixed number Tsplit of exemplars, we split 

it into two ones in IAC, or create two new regions in R-IAC. Splitting is done 

with hyperplanes perpendicular to one dimension. An example of split execution 

is shown in Fig. 4, using a two dimensions input space. 

 

 
 

 

Fig. 3. General architecture of IAC and R-IAC. The prediction Machine is used to 

create a forward model of the world, and measures the quality of its predictions 

(errors values). Then, a split machine cuts the sensorimotor space into different re-

gions, whose quality of learning over time is examined by Prediction Analysis 

Machines. Then, an Action Selection system, is used to choose experiments to per-

form. 
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2) IAC Split Algorithm 

 

In the IAC algorithm, the idea was to find a split such that the two sets of exem-

plars into the two subregions would minimize the sum of the variances of 𝐒 𝒕 +
𝟏  components of exemplars of each set, weighted by the number of exemplars of 

each set. Hence, the split takes place in the middle of zones of maximal change in 

the function 𝑺𝑴(𝒕)  →  𝑺(𝒕 + 𝟏). Mathematically, we consider 𝜑𝑛 =

   𝐒𝐌 𝒕 , 𝐒 𝒕 + 𝟏  
𝒊
   as the set of exemplars possessed by region 𝑅𝑛 . Let us de-

note 𝑗 a cutting dimension and 𝑣𝑗 , an associated cutting value. Then, the split 

of 𝜑𝑛 into  𝜑𝑛+1 and  𝜑𝑛+2 is done by choosing 𝑗 and  𝑣𝑗  such that: 

 

(1) All the exemplars  𝐒𝐌(𝒕), 𝐒(𝒕 + 𝟏) 𝒊 of  𝜑𝑛+1 have a 𝑗𝑡ℎcomponent of 

their 𝐒𝐌 𝒕  smaller than  𝑣𝑗  

(2) All the exemplars  𝐒𝐌(𝒕), 𝐒(𝒕 + 𝟏) 𝒊 of  𝜑𝑛+2 have a 𝑗𝑡ℎcomponent of 

their 𝐒𝐌 𝒕  greater than  𝑣𝑗  

(3) The quantity : 

𝑄𝑢𝑎𝑙 𝑗, 𝑣𝑗  = 

  𝜑𝑛+1 . 𝜎  𝐒 𝒕 + 𝟏 | 𝐒𝐌 𝒕 , 𝐒 𝒕 + 𝟏   ∈  𝜑𝑛+1   

       +   𝜑𝑛+2 . 𝜎  𝐒 𝒕 + 𝟏 | 𝐒𝐌 𝒕 , 𝐒 𝒕 + 𝟏   ∈  𝜑𝑛+2     

      is minimal, where 

 

𝜎 S =
  𝑠 − 

 𝑣𝑣∈𝑆

 S 
 𝑣∈S

2

 S 
 

 

where S is a set of vectors, and  S , its cardinal. Finding the exact optimal split 

would be computationally too expensive. For this reason, we use the following 

heuristics for optimization: for each dimension 𝑗, we evaluate 𝑁𝑠𝑝  cutting values 

 
 

Fig. 4. The sensorimotor space is iteratively and recursively split into sub-spaces, called ―regions‖. 

Each region 𝑅𝑛  is responsible for monitoring the evolution of the error rate in the anticipation of con-

sequences of the robot’s actions, if the associated contexts are covered by this region.  
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𝑣𝑗  equally spaced between the extrema values of  𝜑𝑛 , thus we evaluate 𝑁𝑠𝑝 . | 𝑗 | 

splits in total, and the one with minimal 𝑄𝑢𝑎𝑙 𝑗, 𝑣𝑗   is finally chosen. This com-

putationally cheap heuristics has produced acceptable results in all the experi-

ments we ran so far. It could potentially be improved by allowing region splits 

cutting multiple dimensions at the same time in conjunction with a Monte-Carlo 

based sampling of the space of possible splits.    

 

3) R-IAC Split Algorithm 

 

In R-IAC, the splitting mechanism is based on comparisons between the learn-

ing progress in the two potential child regions. The principal idea is to perform the 

separation which maximizes the dissimilarity of learning progress comparing 

the two created regions. This leads to the direct detection of areas where the learn-

ing progress is maximal, and to separate them from others (see Fig. 5). This con-

trasts with IAC where regions where built independently of the notion of learning 

progress. 

Reusing the notations of the previous section, in R-IAC the split of 𝜑𝑛 into  𝜑𝑛+1 

and  𝜑𝑛+2 is done by choosing 𝑗 and  𝑣𝑗  such that: 

𝑄𝑢𝑎𝑙 𝑗, 𝑣𝑗  = 

(𝐿𝑃𝑛+1  𝐞 𝒕 + 𝟏 | 𝐒𝐌 𝒕 , 𝐒 𝒕 + 𝟏   ∈  𝜑𝑛+1   

− 𝐿𝑃𝑛+2  𝐞 𝒕 + 𝟏 | 𝐒𝐌 𝒕 , 𝐒 𝒕 + 𝟏   ∈  𝜑𝑛+2  )2 

is maximal, where 

 

𝐿𝑃𝑘 𝐸 =

 𝑒 𝑖 
 𝐸 
2

𝑖=1
−  𝑒 𝑖 

 𝐸 

𝑖=
 𝐸 
2

 𝐸 
 

 
Where 𝐸 is a set of errors values  𝑒 𝑖   with errors indexed by their relative order 

i of encounter (e.g. error e(9) corresponds to a prediction made by the robot before 

another prediction which resulted in e(10): this implies that the order of exemplars 

collected and associated prediction errors are stored in the system), and 𝐿𝑃𝑘 𝐸 is 

the learning progress of region 𝑅𝑘 . The heuristics used to find an approximate 

maximal split is the same as the one described above for IAC.  
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1.2.4 Action Selection Machine 

 

We present here an implementation of Action Selection Machine ASM. The 

ASM decides of actions 𝐌 𝒕  to perform, given a sensory context 𝐒 𝒕 . (See Fig. 

3.). The ASM heuristics is based on a mixture of several modes, which differ be-

tween IAC and R-IAC. Both IAC and R-IAC algorithms share the same global 

loop in which modes are chosen probabilistically: 

 

Outline of the global loop of IAC and R-IAC algorithms: 
 Action Selection Machine ASM: given S(t), execute an action 𝐌 𝒕  using the 

mode (𝒏) with probability 𝒑𝒏and based on data stored in the region tree, with 

𝒏 ∈ {𝟏, 𝟐} for IAC and 𝒏 ∈ {𝟏, 𝟐, 𝟑} for R-IAC; 

 Prediction Machine PM: Estimate the predicted consequence 𝑺 𝒕+𝟏 using the 

prediction machine PM ; 

 External Environment: Measure the real consequence 𝑺𝒕+𝟏 

 Prediction Machine PM: Compute the error 𝒆 𝒕 + 𝟏 =  𝒂𝒃𝒔(𝑺 𝒕+𝟏 − 𝑺𝒕+𝟏); 

 Update the prediction machine PM with  𝐒𝐌 𝐭 , 𝐒 𝐭 + 𝟏   

 Split Machine SpM: update the region tree with  𝐒𝐌 𝐭 , 𝐒 𝐭 + 𝟏   and 

𝒆 𝒕 + 𝟏 ; 

 Prediction Analysis Machine PAM: update evaluation of learning progress in 

the regions that cover  𝐒𝐌 𝐭 , 𝐒 𝐭 + 𝟏   

We now present the different exploration modes used by the Action Selection Ma-

chine, in IAC and R-IAC algorithm: 

 

1) Mode 1: Random Babbling Exploration 

 

The random babbling mode corresponds to a totally random exploration  (ran-

dom choice of 𝐌 𝐭  with a uniform distribution), which does not consider pre-

vious actions and context. This mode appears in both IAC and R-IAC algorithm, 

with a probability 𝒑𝟏 typically equal to 30%.  

 
Fig. 5. Evolution of the sensorimotor regions over time. The whole space is pro-

gressively subdivided in such a way that the dissimilarity of each sub-region in 

terms of learning progress is maximal.  
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2) Mode 2: Learning Progress Maximization Exploration 

 

This mode, chosen with a probability 𝒑𝟏 typically equal to 70%, aims to maxim-

ize learning progress, but with two different heuristics in IAC and R-IAC:  

 

IAC: In the IAC algorithm, mode 2 action selection is straightforward: among 

the leaf regions that cover the current state 𝐒 𝐭  (i.e. for which there exists a 

𝐌 𝐭  such that 𝐒𝐌 𝐭  is in the region - there are typically many), the leaf region 

which learning progress is maximal is found, and then a random action within this 

region is chosen; 

 

R-IAC: In the R-IAC algorithm, we take into account the fact that many regions 

may have close learning progress values, and thus should be selected roughly 

equally often, by taking a probabilistic approach to region selection. This avoids 

the problems of a winner take-all strategy when the region splits do not reflect 

well the underlying learnability structure of the sensorimotor space. Furthermore, 

instead of focusing on the leaf regions like in IAC, R-IAC continues to monitor 

learning progress in node regions and select them if they have more learning 

progress: thus learning progress is monitored simultaneously at several scales in 

the sensorimotor space. Let us give more details: 

 

i) Probabilistic approach to region selection 

 

A region 𝑅𝑛  is chosen among all eligible regions 𝑅 = {𝑅𝑖} (i.e. for which 

there exists a 𝐌 𝐭  such that 𝐒𝐌 𝐭  is in the region) with a probability 

 𝑷𝒏 proportional to its learning progress 𝐿𝑃𝑛 , stored in the associated 

 𝑷𝑨𝑴𝒏:  

 𝑷𝒏 =
 𝐿𝑃𝑛 − 𝑚𝑖𝑛 𝐿𝑃𝑖  

  𝐿𝑃𝑖 − 𝑚𝑖𝑛 𝐿𝑃𝑖  
|𝑅|
𝑖=1

 

 

j) Multi-resolution monitoring of learning progress 

 

In the IAC algorithm, the estimation of learning progress only happens in 

leaf regions, which are the only eligible regions for action selection. In R-IAC, 

learning progress is monitored in all regions created during the system’s life 

time, which allows us to track learning progress at multiple resolution in the 

sensorimotor space. This implies that when a new exemplar is available, R-

IAC updates the evaluation of learning progress in all regions that cover this 

exemplar (but only if the exemplar was chosen randomly, i.e. not with mode 3 

as described below). Because regions are created in a top-down manner and 

stored in a tree structure which was already used for fast access in IAC, this 

new heuristics does not bring computational overload and can be implemented 

efficiently.  
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In R-IAC mode 2, when a region has been chosen with the probabilistic approach 

and the multi-resolution scheme, a random action is chosen within this region with 

a probability 𝒑𝟐 typically equal to 60%, (which means this is the dominant mode. 

 

3) Mode 3: Error Maximization Exploration 

 

Mode 3 combines a traditional active learning heuristics with the concept of 

learning progress: in mode 3, a region is first chosen with the same scheme as in 

R-IAC mode 2. But once this region has been chosen, an action in this region is 

selected such that the expected error in prediction will be maximal. This is cur-

rently implemented through a k-nearest neighbor regression of the function 

𝑆𝑀(𝑡)  →  𝑒(𝑡 + 1) which allows finding the point of maximal error, to which is 

added small random noise (to avoid to query several times exactly the same point). 

Mode 3 is typically chosen with a probability  𝒑𝟑 = 10% in R-IAC (and does not 

appear in IAC).  

 

1.2.5 Pseudo-code of R-IAC 

 

RIAC( 𝑷𝑴, 𝒑𝟏,  𝒑𝟐,  𝒑𝟑, 𝑻𝒔𝒑𝒍𝒊𝒕, 𝒍, η, 𝚪, 𝜅, 𝜁) 

 

Init 

 Let 𝑹𝟎 be the whole space of mathematically possible values of the sen-

sorimotor context SM(t) (typically a hypercube in ℝ𝒅); 

 Let 𝑳𝑷𝟎 = 𝟎 be the learning progress associated to 𝑹𝟎 ; 

 Let 𝑳𝒆𝒙𝑹𝟎 
= {∅} (later on in the algorithm, 𝑳𝒆𝒙𝑹𝒌 

will be the set 

  ( 𝐒𝐌𝐢 𝐭 , 𝐒𝐢 𝐭 + 𝟏  , 𝐞𝐢 𝐭 + 𝟏 , 𝝎𝒊)  where the set of  𝐒𝐌𝐢 𝐭 , 𝐒𝐢 𝐭 +

𝟏   components is the set of learning examplars collected in 𝑅𝑘 , the set 

of 𝐞𝐢 𝐭 + 𝟏  components is the set of associated prediction errors, and 𝝎𝒊 

is an indice whose value indicates the relative order in which each partic-

ular learning examplar was collected within  𝑹𝒌 ); 

 Init the prediction/learning machine PM with an empty set of learning 

exemplars; 

Loop 

 

Let S(t) be the current state; 

Let 𝑹 =  𝑹𝟎 , 𝑹𝟏 , … , 𝑹𝒏   be the set of subregions 𝑹𝒍 of the sensorimotor space 

such that there exists a M(t) such that SM(t) ∈ 𝑹𝒍 ; 

For all n, let 𝑳𝑷𝒏 be the learning progress associated to 𝑹𝒏 ; 
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Action Selection 
 

 Select action selection mode mode among mode 1, mode 2 and mode 3 with 

probabilities  𝒑𝟏,  𝒑𝟐,  𝒑𝟑; 
 If mode = mode 1 

o Let M(t) be a random vector (uniform distribution) 

 If mode = mode 2 

o For 𝑙 = 0 … 𝑛, 

 let 𝑷𝑙 =
 𝐿𝑃𝑙−𝑚𝑖𝑛 𝐿𝑃 𝑖∈𝑹 𝐿𝑃𝑖  

  𝐿𝑃𝑖−𝑚𝑖𝑛 𝐿𝑃 𝑖∈𝑹 𝐿𝑃𝑖  
|𝑅|
𝑖=1

  

o Let 𝑹𝒌 be a subregion in 𝑹 chosen with probability  𝑷𝒌, 𝑘 ∈ {0, … , 𝑛} in 

a roulette wheel manner ; 

o Let M(t) be a random vector such that  𝑺𝑴 𝒕 ∈ 𝑹𝒌 (uniform distribu-

tion); 

 If mode = mode 3 

o For 𝑙 = 0 … 𝑛, 

 let 𝑷𝑙 =
 𝐿𝑃𝑙−𝑚𝑖𝑛 𝐿𝑃 𝑖∈𝑹 𝐿𝑃𝑖  

  𝐿𝑃𝑖−𝑚𝑖𝑛 𝐿𝑃 𝑖∈𝑹 𝐿𝑃𝑖  
|𝑅|
𝑖=1

 

o Let 𝑹𝒌 be a subregion in 𝑹 chosen with probability  𝑷𝒌, 𝑘 ∈  0, … , 𝑛 in 

a roulette-wheel manner ; 
o Let 𝑬𝒓𝒓𝑹𝒌 

be a model of the errors made in prediction in 𝑹𝒌 in the past, 

built with a 𝑙 -nearest neighbor algorithm on the last η learning examplars 

collected in 𝑹𝒌 , belonging to 𝑳𝒆𝒙𝑹𝒌 
; 

o Let Mmax(t) = 𝒂𝒓𝒈𝒎𝒂𝒙𝑴 𝒕 𝑬𝒓𝒓𝑹𝒌 
 𝑺𝑴 𝒕   obtained by sampling un-

iformly randomly 𝚪 candidates M(t) ; 

o Let M(t) = Mmax(t) + 𝜺 with 𝜺 a small random number between 0 and σ 

along a uniform distribution. 

 Execute M(t) ; 

 

 

 

Prediction and measurement of the consequences of action 

 

 Estimate the predicted consequence 𝐒 (𝒕 + 𝟏) of executing 𝐌 𝐭  in the environ-

ment with state S(t) using the prediction machine PM ; 

 Measure the real consequence 𝐒 𝐭 + 𝟏  after execution of 𝐌 𝐭  in the environ-

ment with state S(t); 

 Compute the error 𝒆 𝒕 + 𝟏 =  𝒂𝒃𝒔  𝐒  𝒕 + 𝟏 − 𝐒 𝐭 + 𝟏  ; 

 Update the prediction machine PM with the new learning 

plar  𝐒𝐌 𝐭 , 𝐒 𝐭 + 𝟏  ; 
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Update of region models 

 

 Let Ex =  𝐒𝐌 𝐭 , 𝐒 𝐭 + 𝟏 , 𝐞 𝐭 + 𝟏   

 Let 𝛾 be the total number of regions created by the system so far; 

 For all regions 𝑹𝒌 such that SM(t) ∈ 𝑹𝒌 

o Let 𝝎 be the maximum  𝝎𝒊 index in 𝑳𝒆𝒙𝑹𝒌 
; 

o 𝑳𝒆𝒙𝑹𝒌 
=  𝑳𝒆𝒙𝑹𝒌 

+   ( 𝐒𝐌 𝐭 , 𝐒 𝐭 + 𝟏  , 𝐞 𝐭 + 𝟏 , 𝝎 + 𝟏)  where 𝝎 +

𝟏 is an indice used to keep track of the order in which this learning exam-

plar was stored in relation to others (see below); 

o If card(𝑳𝒆𝒙𝑹𝒌 
) = 𝑻𝒔𝒑𝒍𝒊𝒕  

Create two new regions 𝑹𝛾+1 and 𝑹𝛾+2 as subregions of 𝑹𝒌  with 𝑗, a 

cutting dimension and 𝑣𝑗 , an associated cutting value optimized through 

random uniform sampling of 𝜅 possible candidates and such that: 

1.  𝑳𝒆𝒙𝑹𝛾+1 
 is initialized with all the elements in 𝑳𝒆𝒙𝑹𝒌 

that have a 

𝑗𝑡ℎcomponent of their 𝐒𝐌 𝒕  smaller than  𝑣𝑗 ;  

2. 𝑳𝒆𝒙𝑹𝛾+2 
 is initialized with all the elements in 𝑳𝒆𝒙𝑹𝒌 

that have a 

𝑗𝑡ℎcomponent of their 𝐒𝐌 𝒕  greater than  𝑣𝑗 ; 

3. The difference between learning progresses 𝐿𝑃𝛾+1 
 and 

𝐿𝑃𝛾+2 measured in both subregions is maximal, i.e. 

(𝑳𝑷𝜸+𝟏 
  𝐞𝐢 𝒕 + 𝟏 𝛖| 𝐒𝐌𝐢 𝒕 , 𝐒𝐢 𝒕 + 𝟏 , 𝐞𝐢 𝒕 + 𝟏 , 𝝎𝒊  ∈ 𝑳𝒆𝒙𝑹𝛾+1 

   

− 𝑳𝑷𝜸+𝟐   𝐞𝐢 𝒕 + 𝟏 𝝊| 𝐒𝐌𝐢 𝒕 , 𝐒𝐢 𝒕 + 𝟏 , 𝐞𝐢 𝒕 + 𝟏 , 𝝎𝒊  

∈ 𝑳𝒆𝒙𝑹𝛾+2   )2 

is maximal, where errors are indexed by their relative order of measure-

ment  𝝊 calculated from 𝝎 values where 

𝐿𝑃 𝐸 =

 𝑒𝒊

𝑐𝑎𝑟𝑑 (𝐸)−
𝜁
2

𝑖=𝑐𝑎𝑟𝑑  𝐸 −𝜁
−  𝑒𝒊

𝑐𝑎𝑟𝑑 (𝐸)

𝑖=𝑐𝑎𝑟𝑑  𝐸 −
𝜁
2

+1

𝑐𝑎𝑟𝑑(𝐸)
 

 

where 𝜁 defines the time window used to compute learning progress 

achieved through the acquisition of most recent learning examplars in 

each region; 

o Store the learning progresses 𝐋𝐏𝛄+𝟏 
 and 

𝐋𝐏𝛄+𝟐 of the two newly created regions; 

o γ =  γ + 1 

 For all regions 𝑹𝒌 such that SM(t) ∈ 𝑹𝒌 (except 𝑹𝛾+1 and 𝑹𝛾+2  if a split was 

performed), recompute 𝑳𝑷𝒌 and store the value; 

  

EndLoop 
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1.2.6 Software 

 

An open-source Matlab-based software library containing the source code of the 

IAC and R-IAC algorithms, as well as tools and a tutorial that allow to reproduce 

all experiments presented in sections IV and V below is made publicly available 

at: http://flowers.inria.fr/riac-software.zip 

 

1.2.7 Remarks  

 

Regulation of the growth of complexity. As argumented in detail in [28], the 

heuristics consisting in preferentially exploring subregions of the sensorimotor 

space where learning progress is maximal has the practical consequence to lead 

the robot to explore zones of intermediate complexity/difficulty/contingency, 

which has been advocated by developmental psychologists (e.g. [22,23,38]) as be-

ing the key property of spontaneous exploration in humans. Indeed, subregions 

which are trivial to learn are quickly characterized by a low plateau in prediction 

errors, and thus become uninteresting. On the other end of the complexity spec-

trum, subregions which are unlearnable are characterized with a high plateau in 

prediction errors and thus are also quickly identified as uninteresting. In between, 

exploration first focuses on subregions where prediction errors decrease fastest, 

which typically correspond to lower complexity situations, and when these regions 

are mastered and a plateau is reached, exploration continues in more complicated 

subregions where large learning progress is detected.  

 

Key advances of R-IAC over IAC and robustness to potential inaccurate 

and large number of region splits. Among the various differences between IAC 

and R-IAC, the two most crucial ones are 1) the probabilistic choice of regions in 

R-IAC as opposed to the winner take all strategy in IAC, and 2) the multiresolu-

tion monitoring of learning progress in R-IAC as opposed to the only lowest 

scale monitoring of IAC. The combination of these two innovations allows the 

system to cope with potentially inaccurate and supernumerary region splits. In-

deed, a problem in IAC was that if for example one homogeneous region with 

high learning progress was split, the winner-take-all strategy typically biased the 

system to explore later on only one of the two subregions, which was very ineffi-

cient. Furthermore, the more regions were split, which happened continuously 

given the splitting mechanism, the smaller they became, and because only child 

regions were monitored, exploration was becoming increasingly focused on small-

er and smaller subregions of the sensorimotor space, which was also often quite 

inefficient. While the new splitting mechanism introduced in this paper allows the 

system to minimize inaccurate splits, the best strategy to go around these problems 

was to find a global method whose efficiency depends only loosely on the particu-

lar region split mechanism. The probabilistic choice of actions makes the system 

robust to the potentially unnecessary split of homogeneous regions, and the multi-

http://flowers.inria.fr/riac-software.zip
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resolution scheme allows the system to be rather insensitive to the creation of an 

increasing number of small regions.  

 

 

1.3 The Prediction Machine: incremental regression algorithms 

for learning forward and inverse models 

The IAC and R-IAC system presented above are mostly agnostic regarding the 

kind of learning algorithm used to implement the prediction machine, i.e. used to 

learn forward models. The only property that is assumed is that learning must be 

incremental, since exploration is driven by measures of the improvement of the 

learnt forward models as new learning examplars are collected. But among incre-

mental algorithm, methods based on neural networks, memory-based learning al-

gorithms, or incremental statistical learning techniques could be used [43]. This 

agnosticity is an interesting feature of the system since it constitutes a single me-

thod to achieve active learning with multiple learning algorithms, i.e. with mul-

tiple kinds of learning biases that can be peculiar to each application domain, as 

opposed to a number of statistical active learning algorithms designed specifically 

for particular learning methods such as support vector machines, Gaussian mixture 

regression, or locally weighted regression [41]. Nevertheless, what the robot will 

learn eventually will obviously depend both on IAC or R-IAC and on the capabil-

ities of the prediction machine/regression algorithm for which IAC/R-IAC drives 

the collection of learning exemplars.  

 

In robot learning, a particular important problem is to learn the forward and in-

verse kinematics as well as the forward and inverse dynamics of the body 

[44,45,46,47]. A number of regression algorithms have been designed and expe-

rimented in this context in the robot learning literature, and because a particularly 

interesting use of IAC/R-IAC is for driving exploration for the discovery of the 

robot’s body, as it will be illustrated in the experiments in the next section (and 

was already illustrated for IAC in [27,36]), it is useful to look at state-of-the-art 

statistical regression methods for this kind of space. An important family of such 

algorithms is locally weighted regression [45], among which Locally Weighted 

Projection Regression (LWPR) has recently showed a strong ability to learn in-

crementally and efficiently forward and inverse models in high-dimensional sen-

sorimotor spaces [46,45]. Gaussian process regression has also proven to allow for 

very high generalization performances [48]. Another approach, based on Gaussian 

mixture regression [49,3], is based on the learning of the joint probability distribu-

tion of the sensorimotor variables, instead of learning a forward or an inverse 

model, and can be used online for inferring specific forward or inverse models by 

well-chosen projections of the joint density. Gaussian mixture regression (GMR) 

has recently shown a number of good properties for robot motor learning in a se-

ries of real-world robotic experiments [3]. It is interesting to note that these tech-

niques come from advances in statistical learning theory, and seem to allow signif-
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icantly higher performances than for example approaches based on neural-

networks [50]. 

 

Because it is incremental and powerful, LWPR might be a good basic prediction 

algorithm to be used in the R-IAC framework for conducting robot experiments. 

Yet, LWPR is also characterized by a high number of parameters which tuning is 

not straightforward and thus makes its use not optimal for repeated experiments 

about IAC/R-IAC in various sensorimotor spaces. On the other hand, Gaussian 

processes and Gaussian mixture regression have much less parameters (only one 

parameter for GMR, i.e. the number of Gaussians) and are much easier to tune. 

Unfortunately, they are batch methods which can be computationally very de-

manding as the dataset grows. Thus, they cannot be used directly as prediction 

machines in the IAC/R-IAC framework.  

 

This is why we have developed a regression algorithm, called ILO-GMR (Incre-

mental Local Online Gaussian Mixture Regression) which mixes the ease of use of 

GMR with the incremental memory-based approach of local learning approaches. 

The general idea is to compute online local few-components GMM/GMR models 

based on the datapoints in memory whose values in the input point dimensions are 

in the vicinity of this input point. This local approach allows directly to take into 

account any novel single datapoint/learning exemplar added to the database since 

regression is done locally and online. It can be done computationally efficiently 

thanks to the use of few GMM components, and crucially thanks to the use of an 

incremental approximate nearest neighbor algorithm derived from recent batch-

mode approximate nearest neighbor algorithms [51,52,53]. ILO-GMR has only 

two parameters: the number of components for local models, and a parameter that 

defines the notion of local vicinity. Another feature of ILO-GMR is that given its 

incremental and online nature, with a single set of parameters it can in principle 

approximate and adapt efficiently to a high variety of mapping to be learnt that 

may differ significantly in their length scale and might require differ. The technic-

al details and comparison of performances of the ILO-GMR algorithm will be pre-

sented in a future paper. Initial experiments to learn the forward kinematics of 6 to 

10 DOF’s robotic arms have shown that ILO-GMR (tuned with the optimal num-

ber of components and vicinity) allows to reach prediction performances in gene-

ralization slightly worse than GMR (tuned with the optimal number of compo-

nents) but  similar to LWPR (tuned with the experimentally optimal parameters), 

the difference between LWPR and ILO-GMR being that ILO-GMR is much easier 

to tune but slower in prediction due to its only computational of local joint density 

models. Yet, for the 10 DOF systems of our experiments, these prediction times  

appear to be compatible with real-time control.  

 

Learning forward motor models is mainly useful if it can be re-used for robot con-

trol, hence for inferring inverse motor models [46,48]. This brings up difficult 

challenges since most robotic systems are highly redundant, which means that the 

mapping from motor targets in the task space to motor commands in the 

joint/articulatory space is not a function: one target may correspond to many mo-
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tor articulatory commands. This is why learning directly inverse models with 

standards regression algorithm is bound to fail in redundant robots, since when 

asked to find an articulatory configuration that yields a given target configuration, 

it will typically output the mean of accurate solutions which is itself not an accu-

rate solutions. Fortunately, there are various approaches to go around this problem 

[46,48], and one of them is specific to the GMM/GMR approach [50], called the 

single component least square estimate (SLSE): because this approach encodes 

joint distributions rather than functions, redundancies are encoded in the GMM 

and inverse models can be computed by projecting the joint distribution on the 

corresponding output dimensions and then doing regression based only a the sin-

gle Gaussian component that gives the highest posterior probability at the given 

input point. This approach is readily applicable in ILO-GMR, which we have done 

for the hand-eye-clouds experiment described below.  

 

1.4 Self-organizing developmental trajectories with IAC and mo-

tor primitives in the Playground Experiment 

 
In this section, we will present the Playground Experiment in which it is shown 

how the IAC system can drive the exploration and learning of motor primitives by 

an AIBO robot, and focus on the self-organization of behavioural developmental 

trajectories of increasing complexity. An extended presentation of these results is 

available in [27]. Further sections will then present experiments focused on the 

compared efficiency of IAC and R-IAC for active learning. 

 

The Playground Experiment setup involves a physical robot as well as a complex 

sensorimotor system and environment. We use a Sony AIBO robot which is put on 

a baby play mat with various toys that can be bitten, bashed or simply visually de-

tected (see figure 6). The environment is very similar to the ones in which two or 

three month old children learn their first sensorimotor skills, although the senso-

rimotor apparatus of the robot is here much more limited. We have developed a 

web site which presents pictures and videos of this set-up: 

http://playground.csl.sony.fr/.  

 

1.4.1 Motor primitives 
 

The robot is equipped initially with several parameterizable motor primitives that 

control its fore arms and its head. Its back legs are frozen such that it cannot walk 

around. There are three motor primitives: turning the head, bashing and crouch 

biting. Each of them is controlled by a number of real number parameters, which 

are the action parameters that the robot controls. The ``turning head'' primitive is 

controlled with the pan and tilt parameters of the robot's head. The ``bashing'' pri-

mitive is controlled with the strength and the angle of a whole leg movement (a 

lower-level automatic mechanism takes care of setting the individual motors con-

trolling the leg and takes care of choosing which leg –left or right- is used depend-

ing on the angle parameter). The ``crouch biting'' primitive is a complex move-

http://playground.csl.sony.fr/
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ment consisting in sequencing a crouching with the robot chest while opening the 

mouth, and then closing the mouth. It is controlled by the depth of crouching (and 

the robot crouches in the direction in which it is looking at, which is determined 

by the pan and tilt parameters). To summarize, choosing an action consists in set-

ting the parameters of the 5-dimensional continuous vector M(t): 

 

M(t)}  = (p, t, bs, ba, d) 

 

where p is the pan of the head, t the tilt of the head, bs  the strength of the bashing 

primitive, ba the angle of the bashing primitive, and d the depth of the crouching 

of the robot for the biting motor primitive. All values are real numbers between 0 

and 1, plus the value -1 which is a convention used for not using a motor primi-

tive: for example, M(t) =(0.3, 0.95, -1, -1, 0.29) corresponds to the combination of 

turning the head with parameters p=0.3 and t=0.95 with the biting primitive with 

the parameter d=0.29 but with no bashing movement. 

 

 
Fig. 6. The Playground Experiment setup 

 

1.4.2 Perceptual primitives 
 

The robot is equipped with three high-level sensors/perceptual primitives based on 

lower-level sensors. The sensory vector S(t) is thus 3-dimensional: 

 

S(t)  = (Ov, Bi, Os) 

 



20  

where: 

 

 Ov is the binary value of an object visual detection  sensor: It takes the 

value 1 when the robot sees an object, and 0 in the other case. In the 

playground, we use simple visual tags that we stick on the toys and are 

easy to detect from the image processing point of view ;  

 Bi is the binary value of a biting sensor: It takes the  value 1 when the ro-

bot has something in its mouth and 0 otherwise. We use the cheek sensor 

of the AIBO; 

 Os is the binary value of an oscillation sensor: It takes the value 1 when 

the robot detects that there is something oscillating in front of it, and 0 

otherwise. We use the infra-red distance sensor of the AIBO to imple-

ment this high-level sensor. This sensor can detect for example when 

there is an object  that has been bashed in the direction of the robot's 

gaze, but can also  detect events due to human walking around the play-

ground (we do not control the environment). 

 

It is crucial to note that initially the robot knows nothing about sensorimotor af-

fordances. For example, it does not know that the values of the object visual detec-

tion sensor are correlated with the values of its pan and tilt. It does not know that 

the values of the biting or object oscillation sensors can become 1 only when bit-

ing or bashing actions are performed towards an object. It does not know that 

some objects are more prone to provoke changes in the values of the Bi and Os 

sensors when only certain kinds of actions are performed in their direction. It does 

not know for example that to get a change in the value of the oscillation sensor, 

bashing in the correct direction is not enough, because it also needs to look in the 

right direction (since its oscillation sensors are on the front of its head). These re-

marks allow us to understand easily that a random strategy will not be efficient in 

this environment. If the robot would do random action selection, in a vast majority 

of cases nothing would happen (especially for the Bi and Os sensors). 

 

1.4.3 The sensorimotor loop 
 

The mapping that the robot has to learn is: 

 

SM(t) = (p, t, bs, ba, d)  S(t+1) =(Ov’, Bi’,Os’) 

 

The robot is equipped with the IAC system. In this experiment, the sensorimotor 

loop is rather long: when the robot chooses and executes an action, it waits that all 

its motor primitives have finished their execution, which lasts approximately one 

second, before choosing the next action. This is how the internal clock for the IAC 

system is implemented in this experiment. On the one hand, this allows the robot 

to make all the measures  necessary for determining adequate values of (Ov, Bi, 

Os). On the other hand and most importantly, this allows the environment to come 

back to its ``resting state''. This means that environment has no memory: after an 
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action has been executed by the robot, all the objects are back in the same state. 

For example, if the object that can be bashed has actually been bashed, then it has 

stopped oscillating before the robots tries a new action. This is a deliberate choice 

to have an environment with no memory: while keeping all the advantages, the 

constraints and the complexity of a physical embodiment, this makes that mapping 

from actions to perception learnable in a reasonable time. This is crucial if one 

wants to do many experiments (already in this case, each experiment lasts for 

nearly one day). Furthermore, introducing an environment with memory frames 

the problem of the maximization of internal reward within delayed reward rein-

forcement problems, for which there exists powerful and sophisticated techniques 

whose biases would certainly make the results more advanced but would make it 

more difficult to understand the specific impact and properties of the intrinsic mo-

tivation system. 

 

1.4.4 Results 
 

During an experiment we continuously measure a number of features which help 

us characterize the dynamics of the robot's development. First, we measure the 

frequency of the different kinds of actions that the robot performs in a given time 

window. More precisely: 

 The percentage of actions which do not involve the biting and the bas-

hing motor primitive in the last 100 actions (i.e. the robot's action boils 

down to ``just looking'' in a given direction). 

 The percentage of actions which involve the biting motor  primitive in 

the last 100 actions. 

 The percentage of actions which involve the bashing motor primitive; 

 

Then, we track the gaze of the robot and at each action measure if it is looking to-

wards 1) the bitable object, or 2) the bashable object, or 3) no object. This is poss-

ible since from an external point of view we know where the objects are and so it 

is easy to derive the information from the head position.  

 

Third, we measure the evolution of the frequency of successful biting actions and 

the evolution of successful bashing actions. A successful biting action is defined 

as an action which provokes a ``1'' value on the Bi sensor (an object has actually 

be bitten). A successful bashing action is defined as an action which provokes an 

oscillation in the Os sensor. 
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Fig. 7. Curves describing a run of the Playground Experiment.  

 Top 3: Frequencies for certain action types on windows 100 time steps  wide. 

    Mid 3: Frequencies of gaze direction towards certain objects in windows 200 

time steps wide: ``object 1'' refers to the bitable object, and ``object 2'' refers to  

the bashable object.  

    Bottom 3: Frequencies of successful bite ans successful bash in windows 200 

time steps wide. 

 

Figure 7 shows an example of result, showing the evolution of the three kinds of 

measures on three different levels. A striking feature of these curves is the forma-

tion of sequences of peaks. Each of these peaks means basically that at the mo-

ment it occurs the robot is focusing its activity and its attention on a small subset 

of the sensorimotor space. So it is qualitatively different from random action per-

formance in which the curves would be stationary and rather flat. By looking in 

details at these peaks and at their co-occurence (or not) within the different kinds 

of measures, we can make a description of the evolution of the robot's behaviour. 

On figure 7, we have marked a number of such peaks with letters from A to G. We 

can see that before the first peak, there is an initial phase during which all actions 

are produced equally often, that most often no object is seen, and that a successful 
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bite or bash only happens extremely rarely. This corresponds to a phase of random 

action selection. Indeed, initially the robot categorizes the sensorimotor space us-

ing only one big region (and so there is only one category), and so all actions in 

any contexts are equally interesting. Then we observe a peak (A) in the ``just 

looking'' curve: this means that for a while, the robot stops biting and bashing, and 

focuses on just moving its head around. This means that at this point the robot has 

split the space into several regions, and that a region corresponding to the senso-

rimotor loop of ``just looking around'' is associated to the highest learning 

progress from the robot's point of view. Then, the next peak (B) corresponds to a 

focus on the biting action primitive (with various continuous parameters), but it 

does not co-occur with the looking towards the bitable object. This means that the 

robot is trying to bite basically in all directions around him : it did not discover yet 

the affordances of the biting actions with particular objects. The next peak (C) cor-

responds to a focus on the bashing action primitive (with various continuous pa-

rameters) but again the robot does not look towards a particular direction. As the 

only way to discover that a bashing action can make an object move is by looking 

in the direction of this object (because the IR sensor is on the cheek), this means 

that the robot does not use at this point the bashing primitive with the right affor-

dances. The next peak (D) corresponds to a period within which the robot stops 

again biting and bashing and concentrates on moving the head, but this times we 

observe that the robot focuses these ``looking'' movement in a narrow part of the 

visual field : it is basically looking around one of the objects, learning how it dis-

appears/reappears in its field of view. Then, there is a peak (E) corresponding to a 

focus on the biting action, which is this time coupled with a peak in the curve 

monitoring the looking direction towards the bitable object, and a peak in the 

curve monitoring the success in biting. It means that during this period the robot 

uses the action primitive with the right affordances, and manages to bite the bita-

ble object quite often. This peak is then repeated a little bit later (F). Then finally a 

co-occurrence of peaks (G) appears that corresponds to a period during which the 

robot concentrates on using the bashing primitve with the right affordances, man-

aging to actually bash the bashable object quite often.  

 

This example shows that several interesting phenomena have appeared in this run 

of the experiment. First of all, the presence and co-occurrence of peaks of various 

kinds shows a self-organization of the behavior of the robot, which focuses on par-

ticular sensorimotor loops at different periods in time. Second, when we observe 

these peaks, we see that they are not random peaks, but show a progressive in-

crease in the complexity of the behaviour to which they correspond. Indeed, one 

has to remind that the intrinsic dimensionality of the ``just looking'' behaviour 

(pan and tilt) is lower than the ``biting'' behaviour (which adds the depth of the 

crouching movement), which is itself lower than the ``bashing'' behaviour (which 

adds the angle and the strength dimensions). The order of appearance of the pe-

riods within which the robot focuses on one of these activities is precisely the 

same. If we look in more details, we also see that the biting behaviour appears first 

in a non-affordant version (the robot tries to bite things which cannot be bitten), 

and then only later in the affordant version (where it tries to bite the biteable ob-
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ject). The same observation holds for the bashing behaviour: first it appears with-

out the right affordances, and then it appears with the right affordances. The for-

mation of focused activities whose properties evolve and are refined with time can 

be used to describe the developmental trajectories that are generated in terms of 

stages: indeed, one can define that a new stage begins when a co-occurence of 

peaks that never occured before happens (and so which denotes a novel kind of 

focused activity). 

 

 
Fig. 8. Various runs of the simulated experiments. In the top squares, we observe 

two typical developmental trajectories corresponding to the ``complete scenario'' 

described by measure 1. In the bottom curve, we observe rare but existing deve-

lopmental trajectories. 

 

We ran several times the experiment with the real robots, and whereas each par-

ticular experiment produced curves which were different in the details, it seemed 

that some regularities in the patterns of peak formation, and so in terms of stage 

sequences, were present.  We then proceeded to more experiments in order to as-

sess precisely the statistical properties of these self-organized developmental tra-
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jectories. Because each experiment with the real robot lasts several hour, an in or-

der to be able to run many experiments (200), we developed a model of the expe-

rimental set-up. Thanks to the fact that the physical environment was memoryless 

after each action of the robot, it was possible to make an accurate model of it us-

ing the following procedure: we let the robot perform several thousands actions 

and we recorded each time SM(t) and S(t+1). Then, from this database of exam-

ples we trained a prediction machine based on locally weighted regression. This 

machine was then used as a model of the physical environment and the IAC algo-

rithm of the robot was directly plugged into it.  

 

Using this simulated world set-up, we ran 200 experiments, each time monitoring 

the evolution using the same measures as above. We then constructed higher-level 

measures about each of the runs, and based on the structure of the peak sequence. 

Peaks where here defined using a threshold on the height and width of the bumps 

in the curves. These measures correspond to the answer to these following ques-

tions: 

 (Measure 1) Number of peaks?: How many peaks are there in the action 

curves (top curves) ?   

 (Measure 2) Complete scenario?: Is the following developmental scena-

rio matched:  first there is a ``just looking'' peak, then there is a peak cor-

responding to ``biting'' with the wrong affordances which appears before 

a peak corresponding to ``biting'' with the right affordances, and there is a 

peak corresponding to ``bashing'' with the wrong affordances which ap-

pears before a peak corresponding to ``bashing'' with the right affordance 

(and the relative order between ``biting''-related peaks and ``bashing''-

related peaks is ignored). Biting with the right affordance is here defined  

as the co-occurence between a peak in the ``biting'' curve and a peak in 

the ``seeing the biteable object'' curve, and biting with the wrong affor-

dances is defined as all other situations. The corresponding definition ap-

plies to ``bashing''. 

 (Measure 3) Nearly complete scenario?:  Is the following less constrai-

ned developmental scenario matched:  there is a peak corresponding to 

``biting'' with the wrong affordances which appears before a peak corres-

ponding to ``biting'' with the right affordances, and there is a peak cor-

responding to ``bashing'' with the wrong affordances which appears be-

fore a peak corresponding to ``bashing'' with the right affordances (and 

the relative order between ``biting''-related peaks and ``bashing''-related 

peaks is ignored).  

 (Measure 4) Non-affordant bite before affordant bite?: Is there is a 

peak corresponding to ``biting'' with the wrong affordances which  ap-

pears before a peak corresponding to ``biting'' with the right affordances? 

 (Measure 5) Non-affordant bash before affordant bash?:  there is a 

peak corresponding to ``bashing'' with the wrong affordances which ap-

pears before a peak corresponding to ``bashing'' with the right affor-

dances? 
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 (Measure 6) Period of systematic successful bite? Does the robot suc-

ceeds systematically in biting often at some point  (= is there a peak in 

the ``successful bite'' curve)? 

 (Measure 7) Period of systematic successful bash? Does the robot suc-

ceeds systematically in bashing often at some point  (= is there a peak in 

the ``successful bash'' curve? 

 (Measure 8) Bite before bash? Is there a focus on biting which appears 

before a focus on bashing (independantly of affordance) ? 

 (Measure 9) Successful bite before successful bash? Is there a focus on 

successfully biting which appear before a focus on successfully bashing ? 

 

 
Table 1 Statistical measures on the 200 simulation-based experiments. 

The numerical results of these measures are summarized in table 1. This table 

shows that indeed some structural and statistical regularities arise in the self-

organized developmental trajectories. First of all, one has to note that the complex 

and structured trajectory described by Measure 2 appears in 34 percent of the cas-

es, which is high given the number of possible co-occurences of peaks which de-

fine a combinatorics of various trajectories. Furthermore, if we remove the test on 

``just looking'', we see that in the majority of experiments, there is a systematic 

sequencing from non-affordant to affordant actions for both biting and bashing. 

This shows an organized and progressive increase in the complexity of the beha-

viour. Another measure confirms this increase of complexity from another point of 

view: if we compare the relative order of appearance of periods of focused bite or 

bash, then we find that ``focused bite'' appears in the large majority of the cases 
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before  the ``focused bash'', which corresponds to their relative intrinsic dimension 

(3 for biting and 4 for bashing). Finally, one can note that the robot reaches in 100 

percent of the experiments a period during which it repeatedly manages to bite the 

biteable object, and in 78 percent  of the experiments it reaches a period during 

which it repeatedly manages to bash the bashable object. This last point is interest-

ing since the robot was not pre-programmed to achieve this particular task.  

 

These experiments show how the intrinsic motivation system which is imple-

mented (IAC) drives the robot into a self-organized developmental trajectory in 

which periods of focused sensorimotor activities of progressively increasing com-

plexity arise. We have seen that a number of structural regularities arose in the 

system, such as the tendency of non-affordant behaviour to be explored before af-

fordant behaviour, or the tendency to explore a certain kind of behaviour (bite) be-

fore another kind (bash). Yet, one has also to stress that these regularities are only 

statistical: two developmental trajectories are never exactly the same, and more  

importantly it happens that some particular trajectories observed in some experi-

ments differ qualitatively from the mean. Figure 8 illustrate this point. The figures 

on the top-left and top-right corners presents runs which are very typical and cor-

responds to the ``complete scenario''  described by Measure 1. On the contrary, the 

runs presented on the bottom-left and bottom-right corners corresponds to atypical 

results. The experiment of which curves are presented in the  bottom-left corner 

shows a case where the focused exploration of  bashing was performed before the 

focused exploration of biting. Nevertheless, in this case the regularity ``non-

affordant before affordant'' is preserved. On the bottom-right corner, we observe a 

run in which the affordant bashing activity appears very early and before any other 

focused activity. This balance between statistical regularities and diversity has 

parallels in infant sensorimotor development [60]: there are some strong structural 

regularities but from individual to individual there can be some substantial differ-

ences (for e.g. some infants learn how to crawl before they can sit and other do the 

reverse). 

 

1.5 Experimenting and Comparing R-IAC and IAC With a Sim-

ple Simulated Robot 

In this section, we describe the behavior of the IAC and R-IAC algorithms in a 

simple sensorimotor environment that allows us to show visually significant qua-

litative and quantitative differences, as well as compare them with random explo-

ration.   

1.5.1 Robotics configuration 

 

We designed a simulated mechanical system, using the Matlab robotics toolbox 

[54]. It consists of a robotic arm using two degrees of freedom, represented by the 

two rotational axes  𝒒𝟏, 𝒒𝟐 as shown on figure 6.  The upper part of the arm has 

been conceived as a bow, which creates a redundancy in the system: for each posi-
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tion and orientation of the tip of the arm, there are two corresponding possible ar-

ticulatory/joint angle configurations.   

 

This system’s sensory system consists in a one-pixel camera, returning an inten-

sity value 𝒑, set on its extremity as shown on figure 8. The arm is put in a cubic 

painted environment 𝑽, whose wallpapers are visible to the one-pixel camera, ac-

cording to articulatory configurations. 

 

Intensity values measured by the cameras are consequences of both environment 

𝑽 and rotational axes  𝒒𝟏, 𝒒𝟐. So, we can  describe the system input/output map-

ping with two input dimensions, and one output as: 

 

𝒑 = 𝑽(𝒒𝟏, 𝒒𝟐) 

 

Thus, in this system the mapping to be learnt is state independent since here tra-

jectories are not considered (only end positions are measured) and the perceptual 

result of applying motor joint angle commands does not depend on the starting 

configuration.  

1.5.2 Environment configuration 

 

The front wall consists of an increasing precision checker (Fig. 10), conceived 

with a black and white pattern. The designed ceiling contains animated wallpaper 

with white noise, returning a random value to the camera when this one is watch-

ing upward bound. Finally, other walls and ground are just painted in white (Fig. 

9). 

 

The set up of the system is such that we can sort three kinds of subregions in the 

sensorimotor space: 

 The arm is positioned such that the camera is watching the front wall: for most 

learning algorithm, this subregion is rather difficult to learn with an increasing 

level of complexity from left to right (on fig. 7). This feature makes it particular-

ly interesting to study whether IAC or R-IAC are able to spot these properties 

and control the complexity of explored sub-subregions accordingly. 

 The arm is positioned such that the camera is watching the ceiling: the measured 

intensity values are random, and thus there are no correlations between motor 

configurations and sensory measures. Hence, once a few statistical properties of 

the sensory measures have potentially been learnt (such as the mean), nothing 

more can be learnt and thus no learning progress can happen. 

 The arm is positioned such that a white wall is in front of the camera: the meas-

ured intensity value is always 0, so the input/output correlation is trivial. Thus, 

after it has been learnt that intensity values are constant in this area, nothing can 

be further learnt.  
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Because the system has just two motor dimensions and one sensory dimension, 

it can be visualized using a 2D projection on a plane such as in figure 11. This 

projection shows a central vertical zone corresponding to the dynamic noise pro-

jected on the ceiling. Then, we can easily distinguish the front wall, represented on 

both sides of the noisy area, because of the redundancy of the arm. The remaining 

white parts correspond to other walls and the floor.  

 

 
 

Fig. 10. Wallpaper disposed in the front wall. For many 

learning algorithms, the complexity increases from left to 

right. 

 

 

 
 

Fig. 9. Representation of a 2 axes arm, with a one pixel camera mounted on its ex-

tremity. This arm is put in the center of a cubic room, with different painted walls 

of different complexities. 
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1.5.3 Results: Exploration Areas 

 

First, it is interesting to perform qualitative comparisons of the exploration be-

havior generated by random exploration, IAC exploration and R-IAC exploration 

methods. 

For each exploration method, the system is allowed to explore its sensorimotor 

space through 20000 sensorimotor experiments, i.e. it is allowed to collect 20000 

learning exemplars. During each run of a given method, every 2000 sensorimotor 

experiments made by the system one computes a 2D smoothed histogram 

representing the distribution of explored sensorimotor configurations in the last 

500 sensorimotor experiments. This allows us to visualize the evolution of the ex-

ploration focus, over time, for each system.  

Random exploration obviously leads to a flat histogram.  

Fig. 12 presents typical results obtained with R-IAC (on the left) and IAC (on 

the right), on a grey scale histogram where darker intensities denote low explora-

tion focus and lighter intensities denote higher exploration focus. First, we observe 

that R-IAC is focalizing on the front wall, containing the image of the checker, 

using its two possible redundant exploration positions. It avoids the region which 

contains the white noise, and also the regions just containing a white color. In con-

 
 

Fig. 11. 2D visualization of the sensorimotor space of the robot, with two motor 

dimensions one sensory dimension.  
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trast, we cannot observe the same accuracy to concentrate sensorimotor experi-

ments over interesting areas with the IAC exploration method. Here, the algorithm 

is indeed avoiding the noise, but we cannot observe precisely some interest toward 

the front wall, and the system seems to find some things to learn in the back wall, 

as we can see, watching the bottom-right part of the two last images. 

The histograms in figure 12 were smoothed with a large spatial frequency filter 

to allow us to visualize well the global exploratory behavior. Nevertheless, it is al-

so interesting to use a smaller spatial frequency smoother in order to zoom in and 

visualize the details of the exploration behavior in the front wall region. Fig. 13 

shows a typical result obtained with R-IAC, just considering exemplars performed 

watching the front wall in the bottom-left side of the 2D projection. This sequence 

shows very explicitly that the system first focuses exploration on zones of lower 

complexity and progressively shifts its exploration focus towards zones of higher 

complexity. The system used is thus here able to evaluate accurately the different 

complexities of small parts of the world, and to drive the exploration based on this 

evaluation.   

1.5.4 Results: Active Learning 

We can now compare the performances of random exploration, IAC exploration 

and R-IAC exploration in terms of their efficiency for learning as fast as possible 

the forward model of the system. For the R-IAC method, we included here a ver-

sion of R-IAC without the multi-resolution scheme to assess the specific contribu-

tion of multi-resolution learning progress monitoring in the results.  

 

For each exploration method, 30 experiments were run in order to be able to 

measure means and standard deviations of the evolution of performances in gene-

ralization. In each given experiment, every 5000 sensorimotor experiment 

achieved by the robot, we freezed the system and tested its performances in gene-

ralization for predicting 𝒑 from (𝒒𝟏, 𝒒𝟐) on a test database generated beforehand 

and independently consisting of random uniform queries in the sensorimotor sub-

space where there are learnable input/output correlations (i.e. excluding the zone 

with white noise). Results are provided on figure 14. As we can easily observe, 

and as already shown in [27], using IAC leads to learning performances that are 

statistically significantly higher than with RANDOM exploration. Yet, as figure 

14 shows, results of R-IAC are statistically significantly much higher than IAC, 

and the difference between IAC and R-IAC is larger than between IAC and ran-

dom exploration. Finally, we observe that including the multi-resolution scheme 

into R-IAC provides a clear improvement over R-IAC without multi-resolution, 

especially in the first half of the exploration trajectory where inappropriate or too 

early region splits can slow down the efficiency of exploration if only leaf regions 

are taken into account for region selection.    
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Fig. 12. Evolution of the exploration focus when using R-IAC as an exploration 

heuristics (left) or IAC (right). Each square represents the smoothed distribution 

of explored motor configurations at different times in a given run and over a slid-

ing time window.  Darker intensities denote low exploration focus and lighter in-

tensities denote higher exploration focus. We observe that R-IAC leads the system 

to explore preferentially motor configurations such that the camera is looking at 

the checkerboard, while avoiding zones that are trivial to learn or unlearnable 

zones. On the contrary, IAC is unable to organize exploration properly and ―inter-

esting‖ zones are much less explored.  
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Fig. 13. A zoom into the evolution of the distribution of explored sensorimotor 

experiments in one of the two subregions where the camera is looking at the 

checkerboard when R-IAC is used. We observe that exploration is first focused on 

zones of the checkerboard that have a low complexity (for the given learning algo-

rithm), and progressively shifts towards zones of increasing complexity.  

 

 

 
Fig. 14. Comparison of performances of the first and two new implementation of 

IAC, compared with the random exploration approach. 
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1.6 The Hand-Eye-clouds Experiment 

We will now compare the performances of IAC and R-IAC as active learning 

algorithms to learn a forward model in a more complex 6-dimensional robotic sen-

sorimotor space that includes large unlearnable zones. Both algorithms will also 

be compared with baseline random exploration. 

1.6.1 Robotics Configuration 

In this experiment, a simulated robot has two 2-D arms, each with two links and 

two revolute joints whose angles are controlled by motor inputs  𝒒𝟏𝟏,  𝒒𝟏𝟐,  𝒒𝟐𝟏,
𝒒𝟐𝟐 (see figure 15). On the tip of one of the two arms is attached a square camera 

capable to detect the sensory position (𝒙, 𝒚) of point-blobs relative to the square. 

These point-blobs can be either the tip of the other arm or clouds in the sky (see 

figure 15). This means that when the right arm is positioned such that the camera 

is over the clouds, which move randomly, the relation between motor configura-

tions and perception is quasi-random. If on the contrary the arms are such that the 

camera is on top of the tip of the other arm, then there is an interesting sensorimo-

tor relationship to learn. Formally, the system has the relation:  

(𝒙, 𝒚) = 𝑬(𝒒𝟏𝟏, 𝒒𝟏𝟐 ,  𝒒𝟐𝟏, 𝒒𝟐𝟐) 

 

where (𝒙, 𝒚) is computed as follows:   

(1) The camera is placed over the white wall: nothing has been detected: (𝒙, 𝒚) = 

(-10, -10); 

(2) The camera is on top of the left hand: the value  𝒙, 𝒚  of the relative posi-

tion of the hand in the camera referential 𝑪 is taken. According to the camera 

size, the x and y values are in the interval [0; 6]; 

(3) The camera is looking at the window: Two random values  𝒙, 𝒚  playing 

the role of random clouds displacement are chosen for output. The interval of 

outputs corresponds to camera size. 

(4) The camera is looking at the window and sees both hand and cloud: the 

output value (𝒙, 𝒚) is random, like if just a cloud had been detected. 

 

This setup can be thought to be similar to the problems encountered by infants 

discovering their body: they do not know initially that among the blobs moving in 

their field of view, some of them are part of their ―self‖ and can be controlled, 

such as the hand, and some other are independent of the self and cannot be con-

trolled (e.g. cars passing in the street or clouds in the sky). 

 

Thus, in this sensorimotor space, the ―interesting‖ potentially learnable subspace 

is next to a large unlearnable subspace, and also next to a large very simple sub-

space (when the camera is looking neither to the clouds not to the tip of the other 

arm).  
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Fig. 15.  Experimental setup. The 2D robot has two arms, each with two links and 

two revolute joints. At the tip of the right arm is rigidly attached a square cam-

era/eye which can sense either the position of the tip of the other arm in its own 

referential (X, Y) if it is above it, but which can also sense the position of random-

ly moving clouds when the right arm motor configuration is such that the camera 

is looking over the top grey area (the « window »). When the camera senses some-

thing, the robot does not know initially whether this corresponds to the tip of its 

left arm or to a cloud. In subregions corresponding to the first alternative, the mo-

tor/sensor mapping is correlated and a lot can be learnt. In subregions correspond-

ing to the second alternative, there are no correlations between motors and sensors 

and nothing can be learnt except some basic statistical properties of the random 

movement of clouds. There is a third alternative, which actually happens most of 

the time if the joint space is sampled randomly: the camera looks below the win-

dow but does not see its left arm tip. In this very large subregion, the motor to sen-

sor mapping is trivial. 

 

1.6.2 Results 

 

In these experiments, the parameters of IAC and R-IAC are 𝑻𝒔𝒑𝒍𝒊𝒕 = 250, the 

learning progress window is 50,  𝒑𝟏 = 0.3,  𝒑𝟐 = 0.6,  𝒑𝟑 = 0.1. Experiments span 

a duration of  100000 sensorimotor experiments. The incremental learning algo-

rithm that is used to learn the forward model is the ILO-GMR system described in 

section 3.  
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A first study of what happens consists in monitoring the distance between the cen-

ter of the eye (camera), and the hand (tip of the other arm). A small distance 

means that the eye is looking the hand, and a high, that it is focusing on clouds 

(noisy part) or on the white wall. Fig. 16 shows histograms of these distances. We 

first observe the behavior of the Random exploration algorithm. The curve shows 

that the system is, in majority, describing actions with a distance of 22, corres-

ponding to the camera looking at clouds or at the white wall. Interestingly, the 

curve of the IAC algorithm is similar but slightly displaced towards shorter dis-

tance: this shows that IAC pushed the system to explore the ―interesting‖ zone a 

little more.  We finally observe that RIAC shows a large difference with both 

IAC and random exploration: the system spends three times more time in a dis-

tance inferior to 8, i.e. exploring sensorimotor configurations in which the camera 

is looking at the other arm’s tip. Thus, the difference between R-IAC and IAC is 

more important than the difference between IAC and random exploration. 

 

 
 

Fig. 16. Mean distributions of hand-center of eye distances when exploration is 

random, guided by IAC, or guided by R-IAC. We observe that while IAC pushes 

the system to explore slightly more than random exploration the zones of the sen-

sorimotor space where the tip of the left arm is perceived by the camera or near 

the camera, R-IAC is significantly more efficient than IAC for driving explora-

tion in the ―interesting‖ area.  
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Then, we evaluated the quality of the learnt forward model using the three 

exploration algorithms. We considered this quality in two respects: 1) the 

capability of the model to predict the position of the hand in the camera given 

motor configurations for which the hand is within the field of view of the robot; 2) 

the capacity to use the forward model to control the arm: given a right arm 

configuration and a visual objective, we tested how far the forward model could 

be used to drive the left arm to reach this visual objective with the left hand.The 

first kind of evaluation was realized by first building independantly a test database 

of 1000 random motor configurations for which the hand is within the field of 

view, and then  using it for testing the learnt models built by each algorithm at 

various stages of their lifetime (the test consisted in predicting the position of the 

hand in the camera given joint configurations). Thirty simulations were run, and 

the evolution of mean prediction errors is shown on the right of figure 17. The 

second evaluation consisted in generating a set of  (𝒙, 𝒚)𝑪,  𝒒𝟐𝟏, 𝒒𝟐𝟐|𝒙 >
0 𝑎𝑛𝑑 𝒚 > 0  values that are possible given the morphology of the robot, and then 

use the learnt forward models to try to move the left arm, i.e. find  (𝒒𝟏𝟏, 𝒒𝟏𝟐) to 

reach the (𝒙, 𝒚)𝑪 objectives corresponding to particular  𝒒𝟐𝟏, 𝒒𝟐𝟐 values. Control 

was realized through inferring an inverse models using ILO-GMR as presented in 

section 3. The distance between the reached point and the objective point was each 

time measured, and results, averaged over 30 simulations, are reported in the left 

graph of figure 17. 

 

Both curves on figure 17 confirm clearly the qualitative results of the previous 

figure: R-IAC outperforms significantly IAC, which is only slighlty better than 

random exploration. We have thus shown that R-IAC is much more efficient in 

such an example of complex inhomogeneous sensorimotor space. We also illus-

trate on figure 18 configurations obtained, considering fixed 

goals  (𝒙, 𝒚)𝑪,  𝒒𝟐𝟏, 𝒒𝟐𝟐 , and estimated positioning of the left hand.  
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Fig. 17 Left: evolution of performances in control based on the forward model 

learnt through Random, IAC, and R-IAC exploration heuristics, averaged over 30 

simulations. Right : evolution of the generalization capabilities of the learnt 

forward model with Random, IAC, and R-IAC explo., av. over 30 simulations.  

 

 
 

Fig. 18. Examples of performances obtained in control. The first row corresponds 

to goals fixed. Here, values fixed are the joints of the right hand, and the position 

in the referential of its eye. The challenge consists of reaching the target (position 

fixed in the eye) with the left arm. 
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1.7 Conclusion 

 

In this chapter, we have presented two computational intrinsic motivation systems, 

IAC and R-IAC, that share substantial properties with human intrinsic motivation 

systems. As for humans, we have shown that they can be successfully used to self-

organize complex sensorimotor developmental trajectories in learning robots, with 

the formation of stages of increasing complexity. This opens in return new 

modelling insigths to understand better developmental dynamics in humans [27]. 

Furthermore, thanks to their capacity to actively regulate the growth of complexity 

in the exploration process, we have shown that these systems can also be very 

efficient to drive the motor learning of forward and inverse models in spaces 

which contain large subregions that are either trivial or unlearnable. For this kind 

of sensorimotor spaces, typically encountered by developmental robots, we have 

explained why these intrinsic motivation systems, which we may call 

developmental active learning systems, will be much more efficient than more 

traditional active learning heuristics based on the maximization of uncertainty or 

unpredictability.  

 

Furthermore, we have introduced a novel formulation of IAC, called R-IAC, and 

shown that its performances as an intrinsically motivated active learning algorithm 

were far superior to IAC in a complex sensorimotor space where only a small 

subspace was interesting. We have also shown results in which the learnt forward 

model was reused in a control scheme.  

 

Further work will study extensions of the current results in several directions. 

First, experiments with R-IAC presented in this chapter were achieved in 

simulated robots. In spite of the fact that IAC was already evaluated in high-

dimensional real robotic systems [27,36,34], these experiments were focusing on 

the self-organization of patterns in developmental trajectories. Evaluating IAC 

and R-IAC as active learning methods in high-dimensional real sensorimotor 

robotic spaces remains to be achieved. Second, both IAC and R-IAC heuristics 

could also be conceptualized as mechanisms for generating internal immediate 

rewards that could serve as a reward system in a reinforcement learning 

framework, such as for example in intrinsically motivated reinforcement learning 

[28,33,35]. Leveraging the capabilities of advanced reinforcement learning 

techniques for sequential action selection to optimize cumulated rewards might 

allow IAC and R-IAC to be successfully applied in robotic sensorimotor spaces 

where dynamical information is crucial, such as for example for learning the 

forward and inverse models of a force controlled high-dimensional robot, for 

which guided exploration has been identified as a key research target for the future 

[47,48].  

 

Also, as argued in [55], it is possible to devise ―competence-based‖ intrinsic moti-

vation systems in which the measure of interestingness characterizes goals in the 

task space rather than motor configurations in the motor/joint space such as in 
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knowledge-based intrinsic motivation systems like IAC or R-IAC. We believe 

that a competence based version of R-IAC would allow us to increase signifi-

cantly exploration efficiency in massively redundant sensorimotor spaces. Finally, 

an issue of central importance to be studied in the future is how intrinsically moti-

vated exploration and learning mechanisms can be fruitfully coupled with social 

learning mechanisms, which would be relevant not only for motor learning 

[56,57,58], but also for developmental language learning grounded in sensorimo-

tor interactions [59].  
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