Skip to main content

Learning Forward Models for the Operational Space Control of Redundant Robots

  • Chapter
From Motor Learning to Interaction Learning in Robots

Part of the book series: Studies in Computational Intelligence ((SCI,volume 264))

  • 1610 Accesses

Abstract

We present an adaptive control approach combining model learning methods with the operational space control approach. We learn the forward kinematics model of a robot and use standard algebraic methods to extract pseudo-inverses and projectors from it. This combination endows the robot with the ability to realize hierarchically organised learned tasks in parallel, using tasks null space projectors built upon the learned models. We illustrate the proposed method on a simulated 3 degrees of freedom planar robot. This system is used as a benchmark to compare our method to an alternative approach based on learning an inverse of the extended Jacobian. We show the better versatility of the retained approach with respect to the latter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Ahmad, Z., Guez, A.: On the solution to the inverse kinematic problem. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), vol. 3, pp. 1692–1697 (1990)

    Google Scholar 

  • Atkeson, C.: Using locally weighted regression for robot learning. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), vol. 2, pp. 958–963 (1991)

    Google Scholar 

  • Baillieul, J.: Kinematic programming alternatives for redundant manipulators. In: Proceedings of the International Conference on Robotics and Automation (ICRA), vol. 2, pp. 722–728 (1985)

    Google Scholar 

  • Barhen, J., Gulati, S., Zak, M.: Neutral learning of constrained nonlinear transformations. Computer 22(6), 67–76 (1989)

    Article  Google Scholar 

  • Barthelemy, S., Bidaud, P.: Stability measure of postural dynamic equilibrium based on residual radius. In: Proceedings of the 17th CISM-IFToMM Symposium on Robot Design, Dynamics and Control (RoManSy), Tokyo, Japan (2008)

    Google Scholar 

  • Ben Israel, A., Greville, T.: Generalized Inverses: Theory and Applications, 2nd edn. Springer, Heidelberg (2003)

    MATH  Google Scholar 

  • Boudreau, R., Darenfed, S., Gosselin, C.: On the computation of the direct kinematics of parallel manipulators using polynomial networks. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans 28(2), 213–220 (1998)

    Article  Google Scholar 

  • Brüwer, M., Cruse, H.: A network model for the control of the movement of a redundant manipulator. Biological Cybernetics 62(6), 549–555 (1990)

    Article  Google Scholar 

  • Butz, M.V., Herbort, O.: Context-dependent predictions and cognitive arm control with XCSF. In: Proceedings of the 10th annual conference on Genetic and evolutionary computation, pp. 1357–1364. ACM, New York (2008)

    Chapter  Google Scholar 

  • Calinon, S., Guenter, F., Billard, A.: On Learning, Representing and Generalizing a Task in a Humanoid Robot. IEEE Transactions on Systems, Man and Cybernetics, Part B 37(2), 286–298 (2007)

    Article  Google Scholar 

  • Chiaverini, S.: Singularity-robust task-priority redundancy resolution for real-time kinematic control of robot manipulators. IEEE Transactions on Robotics and Automation 13(3), 398–410 (1997)

    Article  Google Scholar 

  • DeMers, D., Kreutz-Delgado, K.: Inverse kinematics of dextrous manipulators. Neural Systems for Robotics, 75–116 (1997)

    Google Scholar 

  • Doty, K., Melchiorri, C., Bonivento, C.: A theory of generalized inverses applied to Robotics. The International Journal of Robotics Research 12(1), 1–19 (1993)

    Article  Google Scholar 

  • D’Souza, A., Vijayakumar, S., Schaal, S.: Learning inverse kinematics. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), vol. 1, pp. 298–303 (2001), doi:10.1109/IROS.2001.973374

    Google Scholar 

  • Golub, G., Van Loan, C.: Matrix computations, 3rd edn. The John Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  • Guez, A., Ahmad, Z.: Solution to the inverse kinematics problem in robotics by neural networks. In: Proceedings of the IEEE International Conference on Neural Networks, vol. 2, pp. 617–624 (1988)

    Google Scholar 

  • Jordan, M.I., Rumelhart, D.E.: Forward models: Supervised learning with a distal teacher. Cognitive science 16(3), 307–354 (1992)

    Article  Google Scholar 

  • Khatib, O.: Dynamic control of manipulators in operational space. In: Sixth CISM-IFToMM Congress on Theory of Machines and Mechanisms, pp. 1128–1131 (1983)

    Google Scholar 

  • Khatib, O.: A unified approach to motion and force control of robot manipulators: The operational space formulation. IEEE Journal on Robotics and Automation 3(1), 43–53 (1987)

    Article  Google Scholar 

  • Klanke, S., Vijayakumar, S., Schaal, S.: A library for locally weighted projection regression. Journal of Machine Learning Research 9, 623–626 (2008)

    MathSciNet  Google Scholar 

  • Kohonen, T.: Self-Organizing Maps. Springer, Berlin (2001)

    MATH  Google Scholar 

  • Lee, S., Kil, R.: Robot kinematic control based on bidirectional mapping neural network. In: Proceedings of International Joint Conference on Neural Networks (IJCNN), vol. 3, pp. 327–335 (1990)

    Google Scholar 

  • Liégeois, A.: Automatic supervisory control of the configuration and behavior of multibody mechanisms. IEEE Transactions on Systems, Man and Cybernetics 7(12), 868–871 (1977)

    Article  MATH  Google Scholar 

  • Ljung, L.: System identification: theory for the user. Prentice-Hall, Inc., Upper Saddle River (1986)

    Google Scholar 

  • Maciejewski, A., Klein, C.: Obstacle avoidance for kinematically redundant manipulators in dynamically varying environments. The International Journal of Robotics Research 4(3), 109–117 (1985)

    Article  Google Scholar 

  • Mansard, N., Chaumette, F.: Task sequencing for sensor-based control. IEEE Transactions on Robotics 23(1), 60–72 (2007)

    Article  Google Scholar 

  • Martinetz, T., Bitter, H., Schulten, K.: Learning of Visuomotor-Coordination of a robot arm with redundant degrees of freedom. In: Proceedings of the Third International Symposium on Robotics and Manufacturing–Research, Education, and Applications, Amer. Society of Mechanical, p. 521 (1990)

    Google Scholar 

  • Martinetz, T., Ritter, H., Schulten, K.: Three-dimensional neural net for learning visuomotor coordination of a robot arm. IEEE Transactions on Neural Networks 1(1), 131–136 (1990)

    Article  Google Scholar 

  • Metta, G., Sandini, G., Vernon, D., Natale, L., Nori, F.: The iCub humanoid robot: an open platform for research in embodied cognition. In: PerMIS: Performance Metrics for Intelligent Systems Workshop, Washington DC, USA (2008)

    Google Scholar 

  • Nakamura, Y.: Advanced Robotics: redundancy and optimization. Addison Wesley, Reading (1991)

    Google Scholar 

  • Nakanishi, J., Cory, R., Mistry, M., Peters, J., Schaal, S.: Operational space control: A theoretical and empirical comparison. The International Journal of Robotics Research 27(6), 737–757 (2008)

    Article  Google Scholar 

  • Natale, L., Nori, F., Metta, G., Sandini, G.: Learning precise 3d reaching in a humanoid robot. In: Proceedings of the IEEE International Conference of Development and Learning (ICDL), London, UK, pp. 1–6 (2007)

    Google Scholar 

  • Nguyen, L., Patel, R., Khorasani, K.: Neural network architectures for the forward kinematics problem in robotics. In: Proceedings of the International Joint Conference on Neural Networks (IJCNN), vol. 3, pp. 393–399 (1990)

    Google Scholar 

  • Nguyen-Tuong, D., Peters, J., Seeger, M., Schoelkopf, B.: Learning inverse dynamics: a comparison. In: Proceedings of the European Symposium on Artificial Neural Networks, ESANN (2008)

    Google Scholar 

  • Nguyen-Tuong, D., Seeger, M., Peters, J.: Real-time local gp model learning. In: Sigaud, O., Peters, J. (eds.) From Motor Learning to Interaction Learning in Robots. SCI, vol. 264, pp. 193–207. Springer, Heidelberg (2010)

    Google Scholar 

  • Peters, J., Schaal, S.: Learning to control in operational space. The International Journal of Robotics Research 27(2), 197–212 (2008)

    Article  Google Scholar 

  • Pourboghrat, F.: Neural networks for learning inverse-kinematics of redundant manipulators. In: Proceedings of the 32nd Midwest Symposium on Circuits and Systems, vol. 2, pp. 760–762 (1989)

    Google Scholar 

  • Rojas, R.: Neural networks: a systematic introduction. Springer, Heidelberg (1996)

    Google Scholar 

  • Sadjadian, H., Taghirad, H.D.: Numerical methods for computing the forward kinematics of a redundant parallel manipulator. In: Proceedings of the IEEE Conference on Mechatronics and Robotics, Aachen, Germany (2004)

    Google Scholar 

  • Sang, L.H., Han, M.C.: The estimation for forward kinematic solution of stewart platform using the neural network. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), vol. 1, pp. 501–506 (1999)

    Google Scholar 

  • Schaal, S., Atkeson, C.G.: Receptive field weighted regression. ART Human Inf. Process Lab, Kyoto, Japan, Tech. Rep. TR-H-209 (1997)

    Google Scholar 

  • Schaal, S., Atkeson, C.G., Vijayakumar, S.: Scalable techniques from nonparametric statistics for real time robot learning. Applied Intelligence 17(1), 49–60 (2002)

    Article  MATH  Google Scholar 

  • Sentis, L., Khatib, O.: Synthesis of whole-body behaviors through hierarchical control of behavioral primitives. The International Journal of Humanoid Robotics 2(4), 505–518 (2005)

    Article  Google Scholar 

  • Shon, A., Grochow, K., Rao, R.: Robotic imitation from human motion capture using gaussian processes. In: Proceedings of the IEEE-RAS/RSJ International Conference on Humanoid Robots, Humanoids (2005)

    Google Scholar 

  • Van der Smagt, P.P.: Minimisation methods for training feedforward neural networks. Neural Networks 7(1), 1–11 (1994)

    Article  Google Scholar 

  • Snyman, J.A.: Practical mathematical optimization: an introduction to basic optimization theory and classical and new gradient-based algorithms. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  • Sun, G., Scassellati, B.: Reaching through learned forward model. In: 4th IEEE/RAS International Conference on Humanoid Robots, vol. 1, pp. 93–112 (2004)

    Google Scholar 

  • Sun, G., Scassellati, B.: A fast and efficient model for learning to reach. International Journal of Humanoid Robotics 2(4), 391–414 (2005)

    Article  Google Scholar 

  • Toussaint, M., Goerick, C.: A bayesian view on motor control and planning. In: Sigaud, O., Peters, J. (eds.) From Motor Learning to Interaction Learning in Robots. SCI, vol. 264, pp. 227–252. Springer, Heidelberg (2010)

    Google Scholar 

  • Vijayakumar, S., Schaal, S.: Locally weighted projection regression: An o (n) algorithm for incremental real time learning in high dimensional space. In: Proceedings of the Seventeenth International Conference on Machine Learning (ICML 2000), Stanford, CA (2000)

    Google Scholar 

  • Vijayakumar, S., D’Souza, A., Schaal, S.: LWPR: A Scalable Method for Incremental Online Learning in High Dimensions. Tech. rep. Edinburgh University Press (2005)

    Google Scholar 

  • Walter, J., Schulten, K.: Implementation of self-organizing neural networks for visuo-motor control of an industrial robot. IEEE Transactions on Neural Networks 4(1), 86–96 (1993)

    Article  Google Scholar 

  • Wang, D., Zilouchian, A.: Solutions of kinematics of robot manipulators using a kohonen self-organizing neural network. In: Proceedings of the IEEE International Symposium on Intelligent Control, pp. 251–255 (1997)

    Google Scholar 

  • Willow, G.: Overview of the PR2 robot (2009), http://www.willowgarage.com/pages/robots/pr2-overview

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Salaün, C., Padois, V., Sigaud, O. (2010). Learning Forward Models for the Operational Space Control of Redundant Robots. In: Sigaud, O., Peters, J. (eds) From Motor Learning to Interaction Learning in Robots. Studies in Computational Intelligence, vol 264. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05181-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-05181-4_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05180-7

  • Online ISBN: 978-3-642-05181-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics