Abstract
In this paper, we studied the two widely used encryption schemes in network applications. Shortcomings have been found in both schemes, as these schemes consume either more memory to gain high throughput or low memory with low throughput. The need has aroused for a scheme that has low memory requirements and in the same time possesses high speed, as the number of the internet users increases each day. We used the SSM model [1], to construct an encryption scheme based on the AES. The proposed scheme possesses high throughput together with low memory requirements.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
El-Fotouh, M., Diepold, K.: Dynamic Substitution Model. In: The Fourth International Conference on Information Assurance and Security (IAS 2008), Naples, Italy (2008)
Stats, I.W.: World Internet Usage and Population Statistics (2008), http://www.internetworldstats.com/stats.htm
Jung, O., Kuhn, S., Ruland, C., Wollenweber, K.: Enhanced Modes of Operation for the Encryption in High-Speed Networks and Their Impact on QoS. In: Varadharajan, V., Mu, Y. (eds.) ACISP 2001. LNCS, vol. 2119, pp. 344–359. Springer, Heidelberg (2001)
Kent, S., Atkinson, R.: IP Authentication Header. RFC 2402 (1998)
Kent, S., Atkinson, R.: IP Encapsulating Security Payload (ESP). RFC 2406 (1998)
Kent, S., Atkinson, R.: Security Architecture for the Internet Protocol. RFC 2401 (1998)
Dunn, J., Martin, C.: Terminology for ATM Benchmarking. RFC 2761 (2000)
Gaj, K., Chodowiec, P.: Hardware performance of the AES finalists - survey and analysis of results, http://ece.gmu.edu/crypto/AES_survey.pdf
Sklavos, N., Moldovyan, N.A., Koufopavlou, O.: High speed networking security: design and implementation of two new DDP-based ciphers. Mob. Netw. Appl. 10, 219–231 (2005)
Daemen, J., Rijmen, V.: AES Proposal: Rijndael, http://citeseer.ist.psu.edu/daemen98aes.html
NIST: Announcing the Advanced Encryption Standard (AES). Technical Report 197, Federal Information Processing Standards Publication (2001)
Schneier, B., Kelsey, J., Whiting, D., Wagner, D., Hall, C., Ferguson, N.: Performance Comparison of the AES Submissions
Gladman, B.: AES optimized C/C++ code (2006), http://fp.gladman.plus.com/AES/index.htm
Lai, Y., Chang, L., Chen, L., Chou, C., Chiu, C.: A novel memoryless AES cipher architecture for networking applications. ISCAS (4), 333–336 (2004)
Li, H., Li, J.: A High Performance Sub-Pipelined Architecture for AES. In: ICCD 2005: Proceedings of the 2005 International Conference on Computer Design, Washington, DC, USA. IEEE Computer Society, Los Alamitos (2005)
Tillich, S., Großschädl, J.: Instruction Set Extensions for Efficient AES Implementation on 32-bit Processors. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 270–284. Springer, Heidelberg (2006)
Menezes, A., Oorschot, P.V., Vanstone, S.: Handbook of Applied Cryptography. CRC Press, Boca Raton (1996)
Tan, Z., Lin, C., Yin, H., Li, B.: Optimization and Benchmark of Cryptographic Algorithms on Network Processors. IEEE Micro. 24, 55–69 (2004)
McGrew, D.: Counter Mode Security: Analysis and Recommendations, http://citeseer.ist.psu.edu/mcgrew02counter.html
Liang, T., Liu, Y., Shieh, C.: Adding Memory Resource Consideration into Workload Distribution for Software DSM Systems. In: CLUSTER, pp. 362–369 (2003)
Greg, C.: The nature of the beast: Recent Traffic Measurements from an Internet backbone (1998), http://citeseer.ist.psu.edu/673025.html
Sinha, R., Papadopoulos, C., Heidemann, J.: Internet Packet Size Distributions: Some Observations. Technical Report ISI-TR-2007-643, USC/Information Sciences Institute (2007), http://netweb.usc.edu/~rsinha/pkt-sizes/ , Orignally released October 2005
Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A Concrete Security Treatment of Symmetric Encryption. In: FOCS 1997: Proceedings of the 38th Annual Symposium on Foundations of Computer Science (FOCS 1997), Washington, DC, USA, p. 394. IEEE Computer Society, Los Alamitos (1997)
Bellare, M., Krovetz, T., Rogaway, P.: Luby-Rackoff backwards: Increasing security by making block ciphers non-invertible. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 266–280. Springer, Heidelberg (1998)
Borman, D., Deering, S., Hinden, R.: IPv6 Jumbograms. RFC 2675 (1999)
May, L., Henricksen, M., Millan, W., Carter, G., Dawson, E.: Strengthening the Key Schedule of the AES. In: Batten, L.M., Seberry, J. (eds.) ACISP 2002. LNCS, vol. 2384, pp. 226–240. Springer, Heidelberg (2002)
Even, S., Mansour, Y.: A Construction of a Cipher from a Single Pseudorandom Permutation. Journal of Cryptology: the journal of the International Association for Cryptologic Research 10, 151–161 (1997)
Soto, J., Bassham, L.: Randomness Testing of the Advanced Encryption Standard Finalist Candidates. Computer Security Division, National Institute of Standards and Technology (2000)
Daemen, J.: Limitations of the Even-Mansour Construction. In: Imai, H., Rivest, R.L., Matsumoto, T. (eds.) ASIACRYPT 1991. LNCS, vol. 739, pp. 495–498. Springer, Heidelberg (1991)
Biryukov, A., Wagner, D.: Advanced Slide Attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, p. 589. Springer, Heidelberg (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
El-Fotouh, M.A., Diepold, K. (2009). A Memory Efficient Network Encryption Scheme. In: Filipe, J., Obaidat, M.S. (eds) e-Business and Telecommunications. ICETE 2008. Communications in Computer and Information Science, vol 48. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05197-5_11
Download citation
DOI: https://doi.org/10.1007/978-3-642-05197-5_11
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-05196-8
Online ISBN: 978-3-642-05197-5
eBook Packages: Computer ScienceComputer Science (R0)