Skip to main content

Max-margin Multiple-Instance Learning via Semidefinite Programming

  • Conference paper
Advances in Machine Learning (ACML 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5828))

Included in the following conference series:

  • 2360 Accesses

Abstract

In this paper, we present a novel semidefinite programming approach for multiple-instance learning. We first formulate the multiple-instance learning as a combinatorial maximum margin optimization problem with additional instance selection constraints within the framework of support vector machines. Although solving this primal problem requires non-convex programming, we nevertheless can then derive an equivalent dual formulation that can be relaxed into a novel convex semidefinite programming (SDP). The relaxed SDP has \(\mathcal{O}(T)\) free parameters where T is the number of instances, and can be solved using a standard interior-point method. Empirical study shows promising performance of the proposed SDP in comparison with the support vector machine approaches with heuristic optimization procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Dietterich, T., Lathrop, R., Lozano-Perez, T.: Solving the multiple-instance problem with axis-parallel rectangles. Artificial Intelligence Journal 89 (1997)

    Google Scholar 

  2. Carson, C., Thomas, M., Belongie, S., Hellerstein, J., Malik, J.: Blobworld: A system for region-based image indexing and retrieval. In: Huijsmans, D.P., Smeulders, A.W.M. (eds.) VISUAL 1999. LNCS, vol. 1614, pp. 509–517. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  3. Maron, O., Ratan, A.: Multiple-instance learning for natural scene classification. In: Proceedings of the International Conference on Machine Learning (1998)

    Google Scholar 

  4. Zhang, Q., Goldman, S., Yu, W., Fritts, J.: Content-based image retrieval using multiple-instance learning. In: Proceedings of the International Conference on Machine Learning (2002)

    Google Scholar 

  5. Andrews, S., Tsochantaridis, I., Hofmann, T.: Support vector machines for multiple-instance learning. In: Advances in Neural Information Processing Systems (2002)

    Google Scholar 

  6. Zhang, Q., Goldman, S.: EM-dd: An improved multiple-instance learning technique. In: Advances in Neural Information Processing Systems (2001)

    Google Scholar 

  7. Gartner, T., Flach, P., Kowalczyk, A., Smola, A.: Multi-instance kernels. In: Proceedings of the International Conference on Machine Learning (2002)

    Google Scholar 

  8. Mangasarian, O., Wild, E.: Multiple instance classification via successive linear programming. Journal of Optimization Theory and Applications 137 (2008)

    Google Scholar 

  9. Zhou, Z., Zhang, M.: Ensembles of multi-instance learners. In: Lavrač, N., Gamberger, D., Todorovski, L., Blockeel, H. (eds.) ECML 2003. LNCS (LNAI), vol. 2837, pp. 492–502. Springer, Heidelberg (2003)

    Google Scholar 

  10. Andrews, S., Hofmann, T.: Multiple instance learning via disjunctive programming boosting. In: Advances in Neural Information Processing Systems (2003)

    Google Scholar 

  11. Zhou, Z., Sun, Y., Li, Y.: Multiple-instance learning by training instances as non-i.i.d. samples. In: Proceedings of the International Conference on Machine Learning (2009)

    Google Scholar 

  12. Lanckriet, G., Cristianini, N., Bartlett, P., Ghaoui, L., Jordan, M.: Learning the kernel matrix with semidefinite programming. Journal of Machine Learning Research 5 (2004)

    Google Scholar 

  13. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge U. Press, Cambridge (2004)

    MATH  Google Scholar 

  14. Xu, L., Neufeld, J., Larson, B., Schuurmans, D.: Maximum margin clustering. In: Advances in Neural Information Processing Systems (2004)

    Google Scholar 

  15. Sturm, J.: Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optimization Methods and Software 11 (1999)

    Google Scholar 

  16. Lofberg, J.: YALMIP: a toolbox for modeling and optimization in MATLAB. In: Proceedings of the CACSD Conference (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Guo, Y. (2009). Max-margin Multiple-Instance Learning via Semidefinite Programming. In: Zhou, ZH., Washio, T. (eds) Advances in Machine Learning. ACML 2009. Lecture Notes in Computer Science(), vol 5828. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05224-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-05224-8_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05223-1

  • Online ISBN: 978-3-642-05224-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics