Abstract
In this paper, we present a novel semidefinite programming approach for multiple-instance learning. We first formulate the multiple-instance learning as a combinatorial maximum margin optimization problem with additional instance selection constraints within the framework of support vector machines. Although solving this primal problem requires non-convex programming, we nevertheless can then derive an equivalent dual formulation that can be relaxed into a novel convex semidefinite programming (SDP). The relaxed SDP has \(\mathcal{O}(T)\) free parameters where T is the number of instances, and can be solved using a standard interior-point method. Empirical study shows promising performance of the proposed SDP in comparison with the support vector machine approaches with heuristic optimization procedures.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Dietterich, T., Lathrop, R., Lozano-Perez, T.: Solving the multiple-instance problem with axis-parallel rectangles. Artificial Intelligence Journal 89 (1997)
Carson, C., Thomas, M., Belongie, S., Hellerstein, J., Malik, J.: Blobworld: A system for region-based image indexing and retrieval. In: Huijsmans, D.P., Smeulders, A.W.M. (eds.) VISUAL 1999. LNCS, vol. 1614, pp. 509–517. Springer, Heidelberg (1999)
Maron, O., Ratan, A.: Multiple-instance learning for natural scene classification. In: Proceedings of the International Conference on Machine Learning (1998)
Zhang, Q., Goldman, S., Yu, W., Fritts, J.: Content-based image retrieval using multiple-instance learning. In: Proceedings of the International Conference on Machine Learning (2002)
Andrews, S., Tsochantaridis, I., Hofmann, T.: Support vector machines for multiple-instance learning. In: Advances in Neural Information Processing Systems (2002)
Zhang, Q., Goldman, S.: EM-dd: An improved multiple-instance learning technique. In: Advances in Neural Information Processing Systems (2001)
Gartner, T., Flach, P., Kowalczyk, A., Smola, A.: Multi-instance kernels. In: Proceedings of the International Conference on Machine Learning (2002)
Mangasarian, O., Wild, E.: Multiple instance classification via successive linear programming. Journal of Optimization Theory and Applications 137 (2008)
Zhou, Z., Zhang, M.: Ensembles of multi-instance learners. In: Lavrač, N., Gamberger, D., Todorovski, L., Blockeel, H. (eds.) ECML 2003. LNCS (LNAI), vol. 2837, pp. 492–502. Springer, Heidelberg (2003)
Andrews, S., Hofmann, T.: Multiple instance learning via disjunctive programming boosting. In: Advances in Neural Information Processing Systems (2003)
Zhou, Z., Sun, Y., Li, Y.: Multiple-instance learning by training instances as non-i.i.d. samples. In: Proceedings of the International Conference on Machine Learning (2009)
Lanckriet, G., Cristianini, N., Bartlett, P., Ghaoui, L., Jordan, M.: Learning the kernel matrix with semidefinite programming. Journal of Machine Learning Research 5 (2004)
Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge U. Press, Cambridge (2004)
Xu, L., Neufeld, J., Larson, B., Schuurmans, D.: Maximum margin clustering. In: Advances in Neural Information Processing Systems (2004)
Sturm, J.: Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optimization Methods and Software 11 (1999)
Lofberg, J.: YALMIP: a toolbox for modeling and optimization in MATLAB. In: Proceedings of the CACSD Conference (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Guo, Y. (2009). Max-margin Multiple-Instance Learning via Semidefinite Programming. In: Zhou, ZH., Washio, T. (eds) Advances in Machine Learning. ACML 2009. Lecture Notes in Computer Science(), vol 5828. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05224-8_9
Download citation
DOI: https://doi.org/10.1007/978-3-642-05224-8_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-05223-1
Online ISBN: 978-3-642-05224-8
eBook Packages: Computer ScienceComputer Science (R0)