Skip to main content

A New Criterion for Global Asymptotic Stability of Multi-delayed Neural Networks

  • Conference paper
Artificial Intelligence and Computational Intelligence (AICI 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5855))

Abstract

This Letter presents some new sufficient conditions for the uniqueness and global asymptotic stability (GAS) of the equilibrium point for a class of neural networks with multiple constant time delays . It is shown that the use of a more general type of Lyapunov-Krasovskii functional enables us to establish global asymptotic stability of a class of delayed neural networks than those considered in some previous papers. Our results generalize or improve the previous results given in the literature.

Project supported Partially by NNSF of China (No:10571032).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hopfield, J.: Neurons with Graded Response Have Collective Computational Properties Like Those of Two-State Neurons. Proc. Natl. Acad. Sci. USA 81, 3088–3092 (1984)

    Article  Google Scholar 

  2. Marcus, C.M., Westervelt, R.M.: Stability of Analog Neural Network with Delay. Phys. Rev. A 39, 347–359 (1989)

    Article  MathSciNet  Google Scholar 

  3. Belair, J.: Stability in A Model of A Delayed Neural Network. J. Dynam. Differential Equations 5, 607–623 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  4. Gopalsamy, K., Leung, I.: Delay Iinduced Periodicity in A Neural Network of Excitation and Inhibition. Physica D 89, 395–426 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  5. Ye, H., Michel, N., Wang, A.: Global Stability of Local Stability of Hopfield Neural Networks with Delays. Phys. Rev. E 50, 4206–4213 (1994)

    Article  MathSciNet  Google Scholar 

  6. Liao, X.F., Yu, J., Chen, G.: Novel Stability Criteria for Bi-directional Associative Memory Neural Networks with Time Delays. Int. J. Circuit Theory Appl. 30, 519–546 (2002)

    Article  MATH  Google Scholar 

  7. Gopalsamy, K., He, X.Z.: Stability in A Asymmetric Hopfield Networks with Transmission Delays. Physica D 76, 344–358 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  8. Liao, X.F., Chen, G., Sanchez, E.N.: LMI-Based Approach for Asymptotically Stability Analysis of Delayed Neural Networks. IEEE Trans. Circuits Syst. 49(7), 1033–1039 (2002)

    Article  MathSciNet  Google Scholar 

  9. Liao, X., Chen, G., Sanchez, N.: Delayed-Dependent Exponential Stability Analysis of Delayed Neural Networks: an LMI Approach. Neural Networks 15, 855–866 (2002)

    Article  Google Scholar 

  10. Liao, X.F., Wu, Z., Yu, J.: Stability Analysis of Cellular Neural Networks with Continuous Time Dlays. J. Comput. Appl. Math. 143, 29–47 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Arik, S.: Stability Analysis of Delayed Neural Networks. IEEE Trans. Circuits Syst. I. 47, 1089–1092 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  12. Liao, X.X., Wang, J.: Algebraic Criteria for Global Exponential Stability of Cellular Neural Networks with Multiple Time Delays. IEEE Trans. Circuits Syst. 50, 268–275 (2003)

    Article  MathSciNet  Google Scholar 

  13. Wu, W., Cui, B.T.: Global Robust Exponential Stability of Delayed Neural Networks. Chaos, Solitons and Fractals 35, 747–754 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  14. Liao, X.F., Li, C.: An LMI Approach to Asymptotical Stability of Multi-Delayed Neural Networks. Physica D 200, 139–155 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  15. Arik, S.: Global Asymptotic Stability of A Larger Class of Neural Networks with Constant Time Delay. Phys. Lett. A 311, 504–511 (2003)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liu, K., Zhang, H. (2009). A New Criterion for Global Asymptotic Stability of Multi-delayed Neural Networks. In: Deng, H., Wang, L., Wang, F.L., Lei, J. (eds) Artificial Intelligence and Computational Intelligence. AICI 2009. Lecture Notes in Computer Science(), vol 5855. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05253-8_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-05253-8_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05252-1

  • Online ISBN: 978-3-642-05253-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics