Abstract
It is known that some NP-Complete problems exhibit sharp phase transitions with respect to some order parameter. Moreover, a correlation between that critical behavior and the hardness of finding a solution exists in some of these problems. This paper shows experimental evidence about the existence of a critical behavior in the computational cost of solving the bandwidth minimization problem for graphs (BMPG). The experimental design involved the density of a graph as order parameter, 200000 random connected graphs of size 16 to 25 nodes, and a branch and bound algorithm taken from the literature. The results reveal a bimodal phase transition in the computational cost of solving the BMPG instances. This behavior was confirmed with the results obtained by metaheuristics that solve a known BMPG benchmark.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Karp, R.: On the computational complexity of combinatorial problems. Networks 5(1), 45–68 (1975)
Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP Completeness. Freeman, San Francisco (1979)
Assman, S., Peck, G., Syslo, M., Zak, J.: The bandwidth of carterpillars with hairs of length 1 and 2. SIAM J. Algebraic and Discrete Methods 2, 387–393 (1981)
Monein, B.: The bandwidth minimization problem for carterpillars with hair length 3 is np-complete. SIAM J. Algebraic Discrete Methods 7(4), 505–512 (1986)
Taylor, W., Cheeseman, P., Kanefsky, B.: Where the really hard problems are. In: Mylopoulos, J., Reiter, R. (eds.) Proceedings of 12th International Joint Conference on AI (IJCAI 1991), vol. 1, pp. 331–337. Morgan Kauffman, San Francisco (1991)
Fu, Y., Anderson, P.: Application of statistical mechanics to np-complete problems in combinatorial optimisation. Journal of Physics A: Mathematical and General 19(9), 1605–1620 (1986)
Huberman, B., Hogg, T.: Phase transitions in artificial intelligence systems. Artif. Intell. 33(2), 155–171 (1987)
Barbosa, V., Ferreira, R.: On the phase transitions of graph coloring and independent sets. Physica A 343, 401–423 (2004)
Hartmann, A., Weigt, M.: Statistical mechanics perspective on the phase transition in vertex covering of finite-connectivity random graphs. Theoretical Computer Science 265, 199–225 (2001)
Kirkpatrick, S., Selman, B.: Critical behavior in the satisfiability of random Boolean expressions. Artificial Intelligence 81, 273–295 (1994)
Smith, B.: Constructing an asymptotic phase transition in random binary constraint satisfaction problems. Theoretical Computer Science 265, 265–283 (2001)
Mazure, B., Sais, L., Grégoire, E.: Tabu search for sat. In: Proceedings of the Fourteenth Natĺ Conf. on Artificial Intelligence (AAAI 1997), pp. 281–285. AAAI Press, Menlo Park (1997)
Monasson, R., Zecchina, R., Kirkpatrick, S., Selman, B., Troyansky, L.: Determining computational complexity from characteristic ṕhase transitions.́ Nature 400, 133–137 (1999)
Navarro, J.A., Voronkov, A.: Generation of hard non-clausal random satisfiability problems. In: AAAI 2005 (2005)
Herroelen, W., De Reyck, B.: Phase transitions in project scheduling. Journal of the Operational Research Society 50, 148–156 (1999)
Slaney, J., Walsh, T.: Phase transition behavior: from decision to optimization. In: Proceedings of the 5th International Symposium on the Theory and Applications of Satisfiability Testing, SAT (2002)
Achlioptas, D., Naor, Y.P. A.: Rigorous location of phase transitions in hard optimization problems. Nature 435, 759–764 (2005)
Gent, I.P., Walsh, T.: Phase transitions and annealed theories: Number partitioning as a case study. In: ECAI, pp. 170–174 (1996)
Gent, I., Walsh, T.: Analysis of heuristics for number partitioning. Computational Intelligence 14(3), 430–451 (1998)
Caprara, A., Salazar-González, J.: Laying out sparse graphs with provably minimum bandwidth. Informs Journal on Computing 17(3), 356–373 (2005)
Cuthill, E.H., McKee, J.: Reducing the bandwidth of sparse symmetric matrices. In: Proc. 24th ACM National Conf. pp. 157–172 (1969)
Esposito, A., Catalano, M., Malucelli, F., Tarricone, L.: Sparse matrix bandwidth reduction: Algorithms, applications and real industrial cases in electromagnetics. Advances in the Theory of Computation and Computational Mathematics 2, 27–45 (1998)
Bhatt, S., Leighton, F.: A framework for solving VLSI graph layout problems. J. Comput. Sytem Sci. 28, 300–343 (1984)
Berry, M., Hendrickson, B., Raghavan, P.: Sparse matrix reordering schemes for browsing hypertext. Lectures in Applied Mathematics 32, 99–123 (1996)
Papadimitriou, C.: The np-completeness of the bandwidth minimization problem. Computing 16(3), 263–270 (1976)
Garey, M.R., Graham, R.L., Johnson, D.S., Knuth, D.E.: Complexity results for bandwidth minimization. SIAM Journal on Applied Mathematics 34(3), 477–495 (1978)
Monien, B.: The bandwidth minimization problem for caterpillars with hair length 3 is np-complete. SIAM J. Algebraic Discrete Methods 7(4), 505–512 (1986)
Blache, G., Karpinski, M., Wirtgen, J.: On approximation intractability of the bandwidth problem. Electronic Colloquium on Computational Complexity (ECCC) 5(014) (1998)
Del Corso, G.M., ManZini, G.: Finding exact solutions to the bandwidth minimization problem. Computing 62, 189–203 (1999)
Marti, R., Campos, V., Pinana, E.: A branch and bound algorithm for the matrix bandwidth minimization. EJORS 186, 513–528 (2008)
Pinana, E., Plana, I., Campos, V., Marti, V.: GRASP and path relinking for the matrix bandwdith minimization. European Journal of Operational Research 153, 200–210 (2004)
Marti, R., Laguna, M., Glover, F., Campos, V.: Reducing the bandwidth of a sparse matrix with tabu search. European Journal of Operational Research 135(2), 211–220 (2001)
Rodriguez-Tello, E., Hao, J., Torres-Jimenez, J.: An improved simulated annealing algorithm for bandwidth minimization. European Journal of Operational Research 185(3), 1319–1335 (2008)
Erdos, P., Rényi, A.: On random graphs. i. Publicationes Mathematicae 6, 290–297 (1959)
Prüffer, P.: Neuer beweis eines satzes über permutationen. Arch. Math. Phys. 27, 742–744 (1918)
Selman, B., Kirkpatrick, S.: Critical behavior in the computational cost of satisfiability testing. Artificial Intelligence 81, 273–295 (1996)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Rangel-Valdez, N., Torres-Jimenez, J. (2009). Phase Transition in the Bandwidth Minimization Problem. In: Aguirre, A.H., Borja, R.M., Garciá, C.A.R. (eds) MICAI 2009: Advances in Artificial Intelligence. MICAI 2009. Lecture Notes in Computer Science(), vol 5845. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05258-3_33
Download citation
DOI: https://doi.org/10.1007/978-3-642-05258-3_33
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-05257-6
Online ISBN: 978-3-642-05258-3
eBook Packages: Computer ScienceComputer Science (R0)