Skip to main content

Hybridization of Evolutionary Mechanisms for Feature Subset Selection in Unsupervised Learning

  • Conference paper
MICAI 2009: Advances in Artificial Intelligence (MICAI 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5845))

Included in the following conference series:

Abstract

Feature subset selection for unsupervised learning, is a very important topic in artificial intelligence because it is the base for saving computational resources. In this implementation we use a typical testor’s methodology in order to incorporate an importance index for each variable. This paper presents the general framework and the way two hybridized meta-heuristics work in this NP-complete problem. The evolutionary mechanisms are based on the Univariate Marginal Distribution Algorithm (UMDA) and the Genetic Algorithm (GA). GA and UMDA – Estimation of Distribution Algorithm (EDA) use a very useful rapid operator implemented for finding typical testors on a very large dataset and also, both algorithms, have a local search mechanism for improving time and fitness. Experiments show that EDA is faster than GA because it has a better exploitation performance; nevertheless, GA’ solutions are more consistent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alba, C.E., Santana, R., Ochoa, R.A., Lazo, C.M.: Finding Typical Testors By Using an Evolutionary Strategy. In: Proceedings of V Iberoamerican Workshop on Pattern Recognition Lisbon, Portugal, pp. 267–278 (2000)

    Google Scholar 

  2. Amershi, S., Conati, C.: Unsupervised and supervised machine learning in user modeling for intelligent learning environments. In: IUI 2007: Proceedings of the 12th international conference on Intelligent user interfaces, pp. 72–81 (2007)

    Google Scholar 

  3. Blum, A., Langley, P.: Selection of relevant features and examples in machine learning. In: Artificial Intelligence 1997, pp. 245–271 (1997)

    Google Scholar 

  4. Cheguis, I.A., Yablonskii, S.V.: About testors for electrical outlines. Uspieji Matematicheskij Nauk 4(66), 182–184 (1955) (in Russian)

    Google Scholar 

  5. Dash, M., Liu, H.: Feature selection for classification. Intelligent Data Analysis 1, 131–156 (1997)

    Article  Google Scholar 

  6. Dmitriev, A.N., Zhuravlev, Y. I., Krendeleiev, F.P.: On the mathematical principles of patterns and phenomena classification. Diskretnyi Analiz 7, 3–15 (1966)

    Google Scholar 

  7. Dy, J.G., Brodley, C.E.: Feature Selection for Unsupervised Learning. The Journal of Machine Learning Research 5, 845–889 (2004)

    MathSciNet  Google Scholar 

  8. Glover, F.W., Kochenberger, G.A., Fred, W. (eds.): Handbook of Metaheuristics, pp. 55–82. Springer, Heidelberg (2005)

    Google Scholar 

  9. Goldberg, D.E.: Genetic Algorithms in Search. In: Optimization, and Machine Learning, Addison-Wesley, New York (1989)

    Google Scholar 

  10. Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. In: Ann Arbor, The University of Michigan Press (1975); 2nd edn. The MIT Press, Cambridge (1992)

    Google Scholar 

  11. Inza, I., Larrañaga, P., Etxeberria, R., Sierra, B.: Feature Subset Selection by Bayesian networks based optimization. Artificial Intelligence 123(1-2), 157–184 (1999)

    Article  Google Scholar 

  12. Kohavi, R.y., Jhon, G.H.: Wrappers for Feature Subset Selection. In: Artificial Intelligence 1997, pp. 273–324 (1997)

    Google Scholar 

  13. Laguna, M., Martí, R.: Scatter Search Methodology and Implementations in C. Kluwer Academic Press, Dordrecht (2003)

    Google Scholar 

  14. Larrañaga, P., Lozano, J.A.: Estimation of distribution algorithms: a new tool for evolutionary computation. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  15. Lazo-Cortés, M., Ruiz-Shulcloper, J.: Determining the feature relevance for non classically described objects and a new algorithm to compute typical fuzzy testors. Pattern Recognition Letters 16, 1259–1265 (1995)

    Article  Google Scholar 

  16. Lazo-Cortes, M., Ruiz-Shulcloper, J., Alba Cabrera, E.: An Overview of the Evolution of the Concept of Testor. Pattern Recognition 34, 753–762 (2001)

    Article  MATH  Google Scholar 

  17. Lozano, J.A., Larrañaga, P., Inza, I., Bengoetxea, I.: Towards a new evolutionary computation: advances in the estimation of distribution algorithms, pp. 55–82. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  18. Mierswa, I., Wurst, M.: Information Preserving Multi-Objective Feature Selection for Unsupervised Learning. In: Proc. of the Genetic and Evolutionary Computation Conference (GECCO 2006), pp. 1545–1552. ACM Press, New York (2006)

    Chapter  Google Scholar 

  19. Tom, M.M.: Machine Learning. Mc.Graw Hill, New York (1997)

    Google Scholar 

  20. Moreno, A., Armengol, E., Béjar, J., Belanche, L., Cortés, U., Gavalda, R., Gimeno, J., López, B., Martín, M., Sánchez, M.: Aprendizaje Automático. Ediciones de la Universidad Politécnica de Catalunya. SL (1994)

    Google Scholar 

  21. Pelikan, M., Sastry, K., Cantu-Paz, E.: Scalable Optimization via Probabilistic Modeling: From Algorithms to Applications. Springer, Secaucus (2006)

    Book  MATH  Google Scholar 

  22. Peng L, Jiaxian Z, Lanjuan L, Yanhong L, Xuefeng Z. Data mining application in prosecution committee for unsupervised learning. In: International Conference on Services Systems and Services Management, Proceedings of ICSSSM 2005, 13-15 June 05, Vol. 2, pp 1061 - 1064 (2005)

    Google Scholar 

  23. Saeys, Y., Degroeve, S., Van de Peer, Y.: Digging into Acceptor Splice Site Prediction: An Iterative Feature Selection Approach. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) PKDD 2004. LNCS (LNAI), vol. 3202, pp. 386–397. Springer, Heidelberg (2004)

    Google Scholar 

  24. Sanchez, D.G., Lazo, C.M.: CT-EXT: An Algorithm for Computing Typical Testor Set. In: Rueda, L., Mery, D., Kittler, J. (eds.) CIARP 2007. LNCS, vol. 4756, pp. 506–514. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  25. Sánchez, D.G., Lazo, C.M.: Modificaciones al Algoritmo BT para Mejorar sus Tiempos de Ejecucion, cuba. Revista Ciencias Matemáticas XX(2), 129–136 (2002)

    Google Scholar 

  26. Santiesteban, A.Y., Pons, P.A.: LEX: Un Nuevo Algoritmo para el Cálculo de los Testores Típicos. Revista Ciencias Matemáticas 21(1), 85–95 (2003)

    Google Scholar 

  27. Shulcloper, J.R., Alba, C., Lazo, C.: Introducción al reconocimiento de Patrones: Enfoque Lógico Combinatorio, México. Serie Verde, CINVESTAV-IPN 51, 188 (1995)

    Google Scholar 

  28. Shulcloper, J.R., Bravo, M.A., Lazo, C.: Algoritmos BT y TB para el cálculo de todos los test típicos, cuba. Revista Ciencias Matemáticas VI(2), 11–18 (1985)

    Google Scholar 

  29. Singhi, S.K., Liu, H.: Feature Subset Selection Bias for Classification Learning. In: Proceedings of 23rd International Conference on Machine Learning, Pittsburgh, pp. 849–856 (2006)

    Google Scholar 

  30. Torres, M.D., Torres, A., de León, P., Ochoa, A.: Búsqueda Dispersa y Testor Típico. In: XI Simposio de Informática y 6° Mostra de Software Académico SIMS 2006, Uruguaiana, Brasil, Hífen, Noviembre del 2006, vol. 30(58) (2006)

    Google Scholar 

  31. Torres, M.D., Ponce, E.E., Torres, A., Luna, F.J.: Selección de Subconjuntos de Características en Aprendizaje no Supervisado utilizando una Estrategia Genética en Combinación con Testores y Testores Típicos. In: Tercer Congreso Internacional de Computación Evolutiva (COMCEV 2007), pp. 57–63 (2007)

    Google Scholar 

  32. Torres, M.D., Ponce, E.E., Torres, A., Torres, A., Díaz, E.: Selección de Características Basada en el Peso Informacional de las Variables en Aprendizaje no Supervisado mediante Algoritmos Genéticos. In: Avances en computación Evolutiva. Centro de Investigaciones en Matemáticas, pp. 100–106 (2008)

    Google Scholar 

  33. Kim, Y., Street, W.N., Menczer, F.: Feature selection in unsupervised learning via evolutionary search. In: KDD 2000, pp. 365–369 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Torres, D., Ponce-de-León, E., Torres, A., Ochoa, A., Díaz, E. (2009). Hybridization of Evolutionary Mechanisms for Feature Subset Selection in Unsupervised Learning. In: Aguirre, A.H., Borja, R.M., Garciá, C.A.R. (eds) MICAI 2009: Advances in Artificial Intelligence. MICAI 2009. Lecture Notes in Computer Science(), vol 5845. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05258-3_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-05258-3_54

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05257-6

  • Online ISBN: 978-3-642-05258-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics