Skip to main content

Linear Wind Farm Layout Optimization through Computational Intelligence

  • Conference paper
MICAI 2009: Advances in Artificial Intelligence (MICAI 2009)

Abstract

The optimal positioning of wind turbines, even in one dimension, is a problem with no analytical solution. This article describes the application of computational intelligence techniques to solve this problem. A systematic analysis of the optimal positioning of wind turbines on a straight line, on flat terrain, and considering wake effects has been conducted using both simulated annealing and genetic algorithms. Free parameters were the number of wind turbines, the distances between wind turbines and wind turbine hub heights. Climate and terrain characteristics were varied, like incoming wind speed, wind direction, air density, and surface roughness length, producing different patterns of positioning. Analytical functions were used to model wake effects quantifying the reduction in speed after the wind passes through a wind turbine. Conclusions relevant to the placement of wind turbines for several cases are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Burton, T., Sharpe, D., Jenkins, N., Bossanyi, E.: Historical Development. In: Wind Energy Handbook, pp. 1–9. John Wiley, New York (2001)

    Chapter  Google Scholar 

  2. Saheb-Koussa, D., Haddadi, M., Belhamel, M.: Economic and technical study of a hybrid system (wind-photovoltaic-diesel) for rural electrification in Algeria. Applied Energy 86(7–8), 1024–1030 (2009)

    Article  Google Scholar 

  3. Graedel, T.E., Crutzen, P.J.: Atmospheric Change: An Earth System Perspective. Freedman, New York (1993)

    Google Scholar 

  4. Burton, T., Sharpe, D., Jenkins, N., Bossanyi, E.: Turbulence in Wakes and Wind Farms. In: Wind Energy Handbook, pp. 35–39. John Wiley, New York (2001)

    Chapter  Google Scholar 

  5. Vermeera, L., Sørensen, J., Crespo, A.: Wind turbine wake aerodynamics. Progress in Aerospace Sciences 39, 467–510 (2003)

    Article  Google Scholar 

  6. Katic, I., Hojstrup, J., Jensen, N.O.: A simple model for cluster efficiency. In: European Wind Energy Association Conference and Exhibition, Rome, Italy, pp. 407–410 (1986)

    Google Scholar 

  7. Larsen, C.G.: A simple wake calculation procedure. Technical Report Risø-M-2760, Risø National Laboratory, Rosklide, Denmark (December 1988)

    Google Scholar 

  8. Ishihara, T., Yamaguchi, A., Fujino, Y.: Development of a new wake model based on a wind tunnel experiment. In: Global Wind Power (2004)

    Google Scholar 

  9. Crespo, A., Hernandez, J.: Turbulence characteristics in wind-turbine wakes. Journal of Wind Engineering and Industrial Aerodynamics 61, 71–85 (1995)

    Article  Google Scholar 

  10. Castro, J., Calero, J.M., Riquelme, J.M., Burgos, M.: An evolutive algorithm for wind farm optimal design. Neurocomputing 70, 2651–2658 (2007)

    Article  Google Scholar 

  11. Grady, S.A., Hussaini, M.Y., Abdullah, M.M.: Placement of wind turbines using genetic algorithms. Renewable Energy 30, 259–270 (2005)

    Article  Google Scholar 

  12. Marmidis, G., Lazarou, S., Pyrgioti, E.: Optimal placement of wind turbines in a wind park using Monte Carlo simulation. Renewable Energy 33, 1455–1460 (2008)

    Article  Google Scholar 

  13. Mosetti, G., Poloni, C., Diviacco, B.: Optimization of wind turbine positioning in large wind farms by means of a genetic algorithm. Journal of Wind Engineering and Industrial Aerodynamics 51(1), 105–116 (1994)

    Article  Google Scholar 

  14. Aarts, E., Korst, J.: Simulated Annealing and Boltzman Machines: A Stochastic Approach to Combinatorial Optimization and Neural Computing. John Wiley, New York (1989)

    Google Scholar 

  15. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading (1989)

    MATH  Google Scholar 

  16. Valenzuela-Rendón, M.: The virtual gene genetic algorithm. In: Genetic and Evolutionary Computation Conference (GECCO 2003), pp. 1457–1468 (2003)

    Google Scholar 

  17. Burton, T., Sharpe, D., Jenkins, N., Bossanyi, E.: The Boundary Layer. In: Wind Energy Handbook, pp. 18–21. John Wiley, New York (2001)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Herbert-Acero, JF., Franco-Acevedo, JR., Valenzuela-Rendón, M., Probst-Oleszewski, O. (2009). Linear Wind Farm Layout Optimization through Computational Intelligence. In: Aguirre, A.H., Borja, R.M., Garciá, C.A.R. (eds) MICAI 2009: Advances in Artificial Intelligence. MICAI 2009. Lecture Notes in Computer Science(), vol 5845. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05258-3_61

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-05258-3_61

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05257-6

  • Online ISBN: 978-3-642-05258-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics