Skip to main content

Aggregated Authentication (AMAC) Using Universal Hash Functions

  • Conference paper
Security and Privacy in Communication Networks (SecureComm 2009)

Abstract

Aggregation is a very important issue to reduce the energy consumption in Wireless Sensors Networks (WSNs). There is currently a lack of cryptographic primitives for authentication of aggregated data. The theoretical background for Aggregated Message Authentication Codes (AMACs) has been proposed by Chan and Castelluccia at ISIT 08.

In this paper, we propose a MAC design based on universal hash functions and more precisely on the Krawczyk’s constructions. We show how those designs can be used for aggregation and how it can be easily adapted for WSNs. Our two AMAC constructions offer a small memory footprint and a signification speed to fit into a sensor. Moreover, when compared with scenarios without aggregation, the method proposed here induces a simulated energy gain between 3 and 9.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aad, I., Castelluccia, C., Hubaux, J.P.: Packet coding for strong anonymity in ad hoc networks. In: IEEE Securecomm (August 2006)

    Google Scholar 

  2. Bernstein, D.J.: The poly1305-aes message-authentication code. In: Gilbert, H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 32–49. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  3. Bhaskar, R., Herranz, J., Laguillaumie, F.: Efficient authentication for reactive routing protocols. In: AINA (2), pp. 57–61. IEEE Computer Society, Los Alamitos (2006)

    Google Scholar 

  4. Carter, L., Wegman, M.N.: Universal Classes of Hash Functions. Journal of Computer and System Sciences - JCSS 18(2), 143–154 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  5. Castelluccia, C.: Securing very dynamic groups and data aggregation in wireless sensor networks. In: IEEE MASS - The Fourth IEEE International Conference on Mobile Ad-hoc and Sensor Systems, Pisa, Italy, October 2007, pp. 1–9 (2007)

    Google Scholar 

  6. Castellucia, C., Mykletun, E., Tsudik, G.: Efficient aggregation of encrypted data in wireless sensor networks. In: Mobile and Ubiquitous Systems: Networking and Services - MobiQuitous 2005, pp. 1–9 (2005)

    Google Scholar 

  7. Chan, A.C.-F., Castelluccia, C.: On the (Im)possibility of aggregate message authentication codes. In: IEEE International Symposium on Information Theory - ISIT 2008, pp. 235–239. IEEE, Los Alamitos (2008)

    Chapter  Google Scholar 

  8. Chan, A.C.-F., Castelluccia, C.: On the Privacy of Concealed Data Aggregation. In: Biskup, J., López, J. (eds.) ESORICS 2007. LNCS, vol. 4734, pp. 390–405. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  9. Chan, H., Perrig, A., Song, D.: Secure hierarchical in-network aggregation in sensor networks. In: CCS 2006: Proceedings of the 13th ACM conference on Computer and communications security, pp. 278–287. ACM, New York (2006)

    Google Scholar 

  10. Domingo-Ferrer, J.: A Provably Secure Additive and Multiplicative Privacy Homomorphism. In: Chan, A.H., Gligor, V.D. (eds.) ISC 2002. LNCS, vol. 2433, pp. 471–483. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  11. Ekdahl, P., Johansson, T.: A new version of the stream cipher SNOW. In: Nyberg, K., Heys, H.M. (eds.) SAC 2002. LNCS, vol. 2595, pp. 47–61. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  12. Ben Hamida, E., Chelius, G., Gorce, J.-M.: Scalability versus accuracy in physical layer modeling for wireless network simulations. In: 22nd ACM/IEEE/SCS Workshop on Principles of Advanced and Distributed Simulation (PADS 2008), Rome, Italy (June 2008)

    Google Scholar 

  13. Handschuh, H., Preneel, B.: Key-Recovery Attacks on Universal Hash Function Based MAC Algorithms. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 144–161. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  14. Heinzelman, W., Chandrakasan, A., Balakrishnan, H.: Energy-efficient communication protocol for wireless microsensor networks. In: Proceedings of the Hawaii Conference on System Sciences (January 2000)

    Google Scholar 

  15. Hu, L., Evans, D.: Secure aggregation for wireless networks. In: Workshop on Security and Assurance in Ad hoc Networks, pp. 384–394 (2003)

    Google Scholar 

  16. Katz, J., Lindell, A.Y.: Aggregate message authentication codes. In: Malkin, T.G. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 155–169. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  17. Krawczyk, H.: LFSR-based hashing and authentication. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 129–139. Springer, Heidelberg (1994)

    Google Scholar 

  18. Nevelsteen, W., Preneel, B.: Software performance of universal hash functions. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 24–41. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  19. Przydatek, B., Song, D., Perrig, A.: SIA: Secure information aggregation in sensor networks. In: ACM SenSys 2003 (November 2003)

    Google Scholar 

  20. Sarkar, P.: A New Universal Hash Function and Other Cryptographic Algorithms Suitable for Resource Constrained Devices. Cryptology ePrint Archive, Report 2008/216 (2008), http://eprint.iacr.org/

  21. Shoup, V.: On Fast and Provably Secure Message Authentication Based on Universal Hashing. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 313–328. Springer, Heidelberg (1996)

    Google Scholar 

  22. Wagner, D.: Resilient aggregation in sensor networks. In: 2nd ACM workshop on Security of ad hoc and sensor networks - SASN 2004, pp. 78–87. ACM, New York (2004)

    Google Scholar 

  23. Yang, Y., Wang, X., Zhu, S., Cao, G.: Sdap: a secure hop-by-hop data aggregation protocol for sensor networks. In: MobiHoc 2006: Proceedings of the 7th ACM international symposium on Mobile ad hoc networking and computing, pp. 356–367. ACM, New York (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Znaidi, W., Minier, M., Lauradoux, C. (2009). Aggregated Authentication (AMAC) Using Universal Hash Functions. In: Chen, Y., Dimitriou, T.D., Zhou, J. (eds) Security and Privacy in Communication Networks. SecureComm 2009. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 19. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05284-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-05284-2_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05283-5

  • Online ISBN: 978-3-642-05284-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics