

R. Meersman, P. Herrero, and T. Dillon (Eds.): OTM 2009 Workshops, LNCS 5872, pp. 78–87, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Rethinking Context Models*

Emiliano Pérez1, Andrés Fortier1,2,3, Gustavo Rossi1,3, and Silvia Gordillo1,4

1 LIFIA. Facultad de Informática. Universidad Nacional de La Plata, Argentina
2 DSIC. Universidad Politécnica de Valencia, Valencia, España

3 CONICET
4 CICPBA

{eperez,andres,gustavo,gordillo}@lifia.info.unlp.edu.ar

Abstract. Since the first context-aware applications were designed, context
modelling has played a central role. During the last decade many different
approaches were proposed to model context, ranging from ad-hoc models to
extensions to relational databases or ontologies. In this paper we propose to take
a step back and analyse those approaches using the seminal views presented by
Paul Dourish in his work (What we talk about when we talk about context).
Based on that analysis we propose a set of guidelines that any context model
should follow.

Keywords: Context-awareness, context modelling, pervasive computing, software
architectures.

1 Introduction

The basic aim of a context-aware (CA) application is to adapt its behaviour in one or
more aspects according to its context. Here, the word adaptation is used in a broad
sense, comprising actions like changing the application’s presentation, the displayed
content [1] and performing proactive [2] or reactive actions [3]. However, in order to
perform some kind of adaptation, we must first have an internal representation of
what is considered context by the application, which in other words means having a
context model. This last issue is not a simple one, since the context model highly
depends on the application’s requirements. In the extreme case, each application may
need to define what context is and how it is represented to best suit its needs. On top
of that, it is not possible to define beforehand what context will be used for; even the
same context model can be used by two different applications to perform completely
different things. As an example of these two issues, consider modelling a user’s
location: while a smart home may need a model based on rooms (i.e. in which room
the user is in) a friend finder may need a (latitude, longitude) model. On the other
hand, an emergency system may reuse the context model used in the friend-finder
application, but use it to send an ambulance instead of finding known people.

Defining context is not simple job and many authors have already engaged in that
assignment. As Paul Dourish states [4] “Context” is a slippery notion. Perhaps

* This paper has been partially supported by the SeCyT under the project PICT 32536.

 Rethinking Context Models 79

appropriately, it is a concept that keeps to the periphery, and slips away when one
attempts to define it. However the important part of his article is not the quote, but the
two opposite views of context that Dourish describes. In short, while the “technical”
view treats context as a representation issue (i.e. How do I represent context inside a
computer program?), the “social” view treats it as an interaction issue (i.e. How does
context emerge from the interaction?). Even though both views are presented as
contrary, they are of great importance to CA software engineering, since their
underlying nature can help us to model context in our programs and understand how
that context is generated.

The aim of this paper is to share our ideas regarding context models and to
encourage the discussion around this topic. These ideas are the theoretical emergent
of our previous works [5, 6, 7]. In this paper our contribution is two-folded:

• We evaluate different context models types according to the concepts presented
in Dourish’s article.

• We present a set of preliminary guidelines to be considered when defining
context models.

2 What We Talk about When We Talk about Context

In this section we will briefly summarise the two views presented by Dourish [4],
since they will be referenced throughout the rest of the paper. The positivist view is
maybe the one that most software developers consider as straightforward, since it
attacks the context modelling problem on a concrete level. In this view the main
concern is how to represent the context information in a computer, thus converting
the problem of modelling context in a representational one. What context is and how
will it be represented depends of the application requirements. We next summarise the
four main aspects of the positivist view, as stated by Dourish:

1. Context is a form of information. It is encoded and represented as any other
application data.

2. Context is delineable. The application requirements define what pieces of
information will be considered as context.

3. Context is stable. As the elements that represent the context can be determined
once and for all, the structure of the context doesn’t need to change.

4. Context and activity are separable. The approach is only concerned with capturing
the data, without keeping a relationship to the action that generated it.

The phenomenological view takes an opposite position, since it considers context as
an interaction problem rather than a representation one. In this approach the
information that represents the context of an entity is subject to the current situation
and the point of view of the observer. Context becomes a subjective concept and it is
no longer a predefined entity; the focus is now shifted to a contextuality relationship
between two or more entities, where an entity becomes contextually relevant to the
other in a given moment. In this view the four key aspects are:

1. Context is a relational property that holds between objects or activities. Something
may or may not be contextually relevant to other entity or activity at a given time.

80 E. Pérez et al.

2. Context can’t be delineated beforehand, since it is constantly being redefined.
3. Context is particular to each activity or action. Contextual information is an

occasioned property, relevant to particular settings, particular instances of action,
and particular parties to that action.

4. Context arises from the activity. Contextual information is actively produced,
maintained and enacted in the course of the activity at hand, thus context can’t be
separated from the action(s) that created it.

It is interesting to notice that different ways of defining context have been around for
some time in the CA community. As a result two main trends appeared: one where the
possible context data was explicitly enumerated [8] (e.g. context is location, time and
activity) and a more general one, where any information that can be used to describe a
subject’s or his medium can be considered context (maybe Dey’s [9] definition1 is the
most popular in this area). Instead of advocating for a radical view we consider that a
lot can be learned from trying to reach a balance between both approaches. The
positivist view has the advantage of placing us (the architects, designers and
developers) in a field that we are used to, where the requirements are stated and the
problem boils down to design and implement an application. On the other hand, this
approach looses many aspects of context interactions and becomes too rigid to finally
achieve the original ideas behind UbiComp [10]. In this sense, the phenomenological
view is better suited, since it focuses on relationships and how those relationships
evolve with time. However, this view has a lack of formality, something required to
design and implement an application. Thus a deeper analysis must be made to define
the requisites for a context model that can be represented in a program while being
flexible to easily accommodate changes.

3 Approaches for Context Modelling

Since the first CA applications appeared the problem of modelling context has been
attacked from different perspectives, each one with its specific trade-offs. To analyse
them we will use the taxonomy presented in [11] and we will show how some of these
categories relate to the presented views of context.

3.1 Key-Value Models

Maybe a first step towards creating a structured context model is to represent context
as a collection of key-value pairs. When using this approach the context in encoded in
a set of pairs, whose key is generally a unique identifier and its value is the context
aspect that the developer is trying to capture. Also, even though it is not a restriction,
the context “values” are generally simple data types, like numbers, arrays or strings.
A typical example of a user location using this approach would be <’location’,
(50.9584,-1.2192)>.

1 Context is any information that can be used to characterise the situation of an entity. An entity

is a person, place, or object that is considered relevant to the interaction between a user and an
application, including the user and applications themselves.

 Rethinking Context Models 81

Context tuples can be managed in different ways according to the architecture. In
some cases the tuples are passed from the sensors straight to the upper layers
(adaptation and reaction) [12] whereas in other cases tuples are sent to a tuple space
that is shared among different processes or applications [13].

This approach for context modelling clearly fits the positivist view better than the
phenomenological one, since:

• Context is a form of information and is encoded in tuples.
• Context is delineable because it is explicitly represented by tuples.
• Context may not be stable. There is no structure of context and its shape may

vary freely, especially when different providers feed a shared tuple space.
• Context and activity are separable. Most approaches take this assumption since

there is no association between the tuples value and the process where this
information emerged from. However, tuples could be tagged with metadata to
keep the link between context data and the activity that produced it.

3.2 Markup-Based Models

Evolving from the key-value approach we find several models that use variations of
markup languages (such as XML) to represent contextual information [14, 15]. These
models present an improvement over the tuple-based models since they allow
hierarchical structures and the possibility to add extra information besides the key-
value pair by means of specific tags or tag-attributes.

Mostly, the markup documents (often called profiles [11, 15]) are used to store
static information about an object. Because of their nature they are highly portable
and thus especially adequate for distributed systems that use hybrid technologies (e.g.
web services). On the other hand, profiles are defined as static structures, largely used
to describe the capabilities of specific hardware or software components.

Although this approach enhances the previous one form the phenomenological
point of view, it is still associated to the positivist view:

• Context is a form of information and is encoded in markup tags.
• Context is delineable because we can determine which aspects will be relevant

to each profile following the XML schema.
• Although it may be built dynamically, context is well structured and usually

stable since it is explicitly represented by serialised XML structures.
• Context and activity are separable. The profiles are independent tagged

documents and are configured statically prior to its use.

3.3 Relational-Based Models

Another widely used method for building context models is by using a relational
database (RDB). This approach has the advantage of being a well-understood
technology that is backward compatible with legacy data.

Current RDB context models are used to store preconfigured preferences [16, 17]
but have great capability to produce new context dependent information performing
specialized queries. In approaches like [16] context is directly considered in the SQL
clauses (using views or specifying it in the WHERE clause), while other models use

82 E. Pérez et al.

enhanced DBMS that support special context-dependent clauses (e.g. [17] uses OLAP
operators to process CA queries).

In general, RDBs store context information as attributes in relationships tables
[17], which means that the context model structure is defined by the RDB layout. In
order to change the context shape the database structure has to be modified and
although it may not represent a major rewrite, it certainly cannot be done easily at
runtime. Approaches like these are best suited for situations in which context
relevancy is predefined (user preferences, device characteristics, etc.) or when the
functionality of the application is limited to context-dependent data retrieval.

Considering the main aspects of this approach we find that:

• Context is a form of information stored in relational database tables.
• Context is delineable by the table structure that represents the relationship

between the context information and the entities.
• Context structure is stable. Changing the context shape implies redefining the

RDB structure, which is almost never done at run time.
• Context and activity are separable. Databases can only represent the context

data in tables, thus losing the link to the activity that created it.

3.4 Ontology-Based Models

Ontologies are used to define relationships between concepts and later use that
information for reasoning. An ontology consists mainly of a knowledge base (KB)
that represents the domain concepts and the relationships between them. The
information in an ontology is accessed and processed by interpreters (also called
reasoners or reasoning engine) [18] independent to the KB itself. Because of this
decoupling, a specific KB can be used by different systems for different proposes.

Ontologies support incremental modification of the KB in a collaborative fashion and
allow for two main kinds of reasoning [19]. The first one is to infer new relationships
from the existing ones (e.g. transitive relationships, inverse relationships, etc.) whereas
the second is to express new rules in first order logic predicates (e.g. if a condition is
met, a new relationship is created). For instance, an ontology that models the user
location can be used to easily convert it between different representations using
reasoners (e.g. from GPS coordinates to streets).

The flexibility and benefits of ontologies come at a cost, since the concepts and
relationships must be built and agreed by a set of users. Also, conflicts may arise
regarding the ontology model. Because of this, to think of an ontology general enough
to model any context domain that is effectively usable seems hardly feasible.
However, we believe that once defined a particular context domain (such as location,
activity, mood, etc) ontologies are of great help to develop CA systems.

Regarding the use of ontologies for modelling context we can summarise it in the
following statements:

• Context is information and it is stored in dynamic documents or databases.
• Context is not necessarily delineable because context-relevancy can be

determined dynamically by the use of reasoners.

 Rethinking Context Models 83

• Context structure is not stable. The evolution capabilities of ontologies allow
the structure of the context information to evolve from the use and
configuration.

• Context can evolve from activity. This relationship can be expressed using
reasoners that react upon the current situation.

3.5 Conclusion

All these models present different characteristics, but in general they all describe the
context as data somehow related with the domain model. Although they all aim to
solve similar problems, each approach is intended for a particular setting and has a
specific scenario for which it was developed.

In Section 2 we presented the phenomenological view as an interesting way to
think about what context is and how it is relevant to entities, while in this section we
made a brief analysis on current ways to represent the context information in
computing software. Most of the approaches revised take the positivist point of view,
being the ontology-based models the ones that are closer to the phenomenological
view. In the following section we will aim for a balance between the two
interpretations in order to consider the philosophy behind the concept of context,
without forgetting that we need to represent it as information usable by a program.

4 A Balance between Positivism and Phenomenology

The phenomenological view seems to characterise context in a more realistic way
than the positivist one. Consider a typical mobile user who is permanently exposed to
social interactions. Such scenario is bound to have unpredictable and constantly
changing contextuality relationships. However, in order to incorporate CA behaviour
in our software we need some sort of formalisation; we must use a context
representation that characterises these relationships between objects and situations.
Ultimately we must cope with the tension between the phenomenological and
positivist approaches, tackling the representational problem of context in a way that is
as close as possible to the phenomenological approach.

To perform this analysis we decided to restrict ourselves to the object oriented
paradigm and evaluate how the phenomenological ideas could be applied to an OO
context model. To keep things simple we use the “pure” definition of the OO
paradigm [20], where an application can be seen, in a reductionist way, as a set of
objects collaborating with each other by sending messages. Thus the behaviour of an
application is scattered in a set of objects, which are responsible for implementing
certain responsibilities [21]. This basic statement, which may seem trivial at first, it’s
actually one of the cornerstones for our proposed guidelines.

From the characterisation of the phenomenological approach we can see that
context is not data floating around in our program or a row in a database. When we
refer to context, we are referring to what is contextually relevant for someone (or
something) at a given point. Here we would like to stress the mention of the subject
(someone or something), which means that context can’t exist by itself. Translating
this idea to the OO paradigm, modelling context becomes modelling what is

84 E. Pérez et al.

contextually relevant for a given object. This idea applies both to domain models that
already exist (e.g. knowing the location of a student object in a university information
system) or to entities that were not conceived before (e.g. to adapt our application to
the network’s bandwidth we must model the network connection first). We consider
this statement so important that is actually the first of our design guidelines:

1. Context information is always bound to an object. In order to manage context
information, we must first define whose context it is.

By applying this first guideline an interesting characteristic arises regarding how
context information is arranged in an application: since the context is part of an
object, there is no notion of a context repository or database. In fact, context appears
as distributed information and “the context” (as referred to in many publications) is
actually the aggregation of each object’s context. Thus, our second guideline states:

2. Context is not a monolithic piece of data, but information distributed across
objects in our application.

To clarify this first two guidelines consider a system where services are provided to a
user. In such system we would find classes like User and Service. If we want to
support location-based services (e.g. showing restaurants near the user) we would
need to associate context information to the user object. Now suppose that we also
want to support interaction with other users to provide location based services (e.g.
sending an invitation for launch to a group of friends and finding the restaurant that is
convenient for all of them). In our approach this requirement is satisfied naturally,
since the group context is actually the aggregation of the individual context of each
user. Both guidelines are addressed in our previous work [6] by aware objects and
context features.

Different applications may have different context requirements, even for the same
application object. For example, the user’s location is a required feature for a route
planner but for a CA agenda it may be an optional feature; since it can be useful to
provide a better service, but it is not mandatory. Finally the user’s location may be of
no use for an application whose adaptation behaviour is to be able to present
information on different devices. However, all the applications mentioned before may
have as a central actor the same user object (e.g. representing the owner of a PDA).
These different ways of viewing a user’s context can be related to the work of
Gershenson [22], who distinguishes the notions of absolute (a-being) and relative (re-
being) being. As defined by the author, the a-being is the absolute and infinite being,
independent of the observer. On the other hand, the re-being is how an entity is
represented and treated by an observer, shaped by the current context of the observer
and the entity. Thus, when modelling an object’s context we are choosing a specific
view of the subject and deciding what is contextually relevant. This leads to the third
design guideline:

3. A context model should support different context representation of the same
subject, according to the adaptation required.

 Rethinking Context Models 85

This guideline is achieved in our prototypes [6, 7] by the use of adaptation
environments.

If we go back to Dourish’s work on context views, a conflicting issue arises: the
positivist view assumes that the context “shape” (i.e. what do we consider to be
context) is fixed while the application is running, whereas the phenomenological view
argues that context is constantly being reshaped. This reshape can be the outcome of
losing the means to acquire an existing context feature (e.g. losing a GPS signal
tracking a location) or a change in the application functionality (e.g. adding time
constraints to the location based services). As a result, we would expect the context of
any object to be re-shaped due to different forces (sensor availability, privacy,
contextual relevance, etc). From this observation we derive the fourth guideline:

4. The context shape associated to an object should be changeable at run time.

From the designer point of view, context modelling is a difficult task since a balance
between flexibility and reusability must be met. In other words, we would like to have
a structured context model that allows high-reuse while at the same time we would
like our context model to be as flexible as possible. To handle this issue (and taking
into account our previous guidelines) the context model should allow different
context-domains to be modelled with different approaches. Thus, we may find useful
to model a user’s location with an ontology, while his (static) personal data is stored
in a profile:

5. Context should be separable and modelled in a domain-basis, allowing each
context domain to be realized using a different modelling technique.

Finally, a topic that we must address is the second item in the positivist
characterisation of context. This item states that context is delineable for an
application and that this can be done in advance. This is another issue that we must
balance, since we must have a set of fixed requirements to develop an application but
we must be flexible enough to quickly accommodate new requirements. In our
approach we consider that it is impossible to define in advance all the possible types
of context an application can use. Each application will have its own context
requirements and it is very likely that future killer applications make use of context
information in novel ways. Thus, instead of trying to build the context ontology we
rather prefer to mount a skeleton that allows new domains to be defined and quickly
prototyped to suite the application’s needs. This leads to our sixth guideline:

6. A context model should define a basic structure and be extensible to
accommodate new context requirements.

In our approach [6] these last three guidelines are addressed by the relationship
between the aware objects and the context features, since run-time changes are
naturally supported and each context domain is encapsulated inside a context feature.

The guidelines presented so far are the result of trying to reach a balance between
the two views presented by Dourish. To end this section we will analyse our proposal
in the same way we did with the other approaches:

86 E. Pérez et al.

1. Context is a relationship between objects. An object is, at a given time,
contextually relevant to other object(s).

2. Context is delineable by accounting the relationship between objects.
3. Context may not be stable. There is no restriction regarding the lifetime of the

relationship between objects.
4. Context and activity are separable. Even though this is true, what is not separable is

the context from its subject. If needed, by using a Command [23] pattern we can
even associate actions with context.

By specifying our guidelines our aim is to take Dourish views of context to a more
concrete level, where the requirements for context models can be stated. Since this is
an ongoing work, these guidelines should not be considered as definitive principles,
but as a starting point to define what we need to build scalable context models.

5 Discussion and Further Work

In this paper we have presented a set of guidelines for creating flexible context
models. These guidelines are not tied to a specific programming language or
technology, since we aim to express them as universally as possible. Our only
assumption throughout the paper is that the context model will be implemented using
the object-oriented paradigm.

The guidelines presented are the theoretical emergent of different applications and
case studies we developed. We are currently working on a context model that follows
these guidelines, which is based on a reflective layer that allows us to attach context
information to any object in the application model and then build adaptation modules
for different context-aware applications.

On a more theoretical side we are currently analysing the relationship between the
underlying application model and those objects that account as context. As Dourish
states “The participants may change the subject or otherwise turn a matter from one
of middling relevance to central relevance […]. They might turn the location of the
conversation from “context” to “content” by remarking that it’s too public a place
and perhaps they should move elsewhere. This means that, what is considered context
at a given point, may be later considered as core application model (i.e. that the
context has gained enough relevancy to become core behaviour) and vice versa.
Coping with these changes is still and open issue for us.

References

1. Pascoe, J.: Adding generic contextual capabilities to wearable computers. In: IEEE
International Symposium on Wearable Computers (1998)

2. Leonhardt, U.: Supporting Location-Awareness in Open Distributed Systems. PhD thesis,
Dept. of Computing, Imperial College (1998)

3. Lamming, M., Flynn, M.: Forget-me-not: Intimate computing in support of human
memory. In: Proceedings FRIEND21 Symposium on Next Generation Human Interfaces
(1994)

 Rethinking Context Models 87

4. Dourish, P.: What we talk about when we talk about context. Journal of Personal and
Ubiquitous Computing 8(1), 19–30 (2004)

5. Rossi, G., Gordillo, S., Challiol, C., Fortier, A.: Context-Aware Services for Physical
Hypermedia Applications. In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM 2006
Workshops. LNCS, vol. 4278, pp. 1914–1923. Springer, Heidelberg (2006)

6. Challiol, C., Fortier, A., Gordillo, S., Rossi, G.: Architectural and Implementation Issues
for a Context-Aware Hypermedia. Journal of Mobile Multimedia (2008)

7. Challiol, C., Fortier, A., Gordillo, S., Rossi, G.: A flexible architecture for context-aware
physical hypermedia. In: DEXA 2007: Proceedings of the 18th International Conference
on Database and Expert Systems Applications, pp. 590–594. IEEE, Washington (2007)

8. Brown, P.J., Bovey, J.D., Chen, X.: Context-aware applications: from the laboratory to the
marketplace. Personal Communications, 58–64 (1997)

9. Dey, A.K., Abowd, G.D., Wood, A.: Cyberdesk: a framework for providing self-
integrating context-aware services. Knowledge-Based Systems 11, 3–13 (1998)

10. Weiser, M.: The computer for the 21st century. In: Human-computer interaction: toward
the year 2000, pp. 933–940. Morgan Kaufmann, San Francisco (1995)

11. Strang, T., Linnhoff-Popien, C.L.: A context modelling survey. In: Workshop on
Advanced Context Modelling, Reasoning and Management. UbiComp, Nottingham,
England (2004)

12. Samulowitz, M., Michahelles, F., Linnhoff-Popien, C.L.: Capeus: An architecture for
context-aware selection and execution of services. In: New developments in distributed
applications and interoperable systems (2001)

13. Schmidt, A., Van Laerhoven, K.: How to build smart appliances? Personal
Communications, 66–71 (2001)

14. Han, J., Cho, Y., Choi, J.: A Workflow Language Based on Structural Context Model for
Ubiquitous Computing. In: Yang, L.T., Amamiya, M., Liu, Z., Guo, M., Rammig, F.J.
(eds.) EUC 2005. LNCS, vol. 3824, pp. 879–889. Springer, Heidelberg (2005)

15. WAPFORUM, User Agent Profile (UAProf), http://www.wapforum.org
16. Bolchini, C., Curino, C.A., Orsi, G., Quintarelli, E., Rossato, R., Schreiber, F.A., Tanca,

L.: And what can context do for data? Communications of ACM (to appear)
17. Stefanidis, K., Pitoura, E., Vassiliadis, P.: On Supporting Context-Aware Preferences in

Relational Database Systems. In: International Workshop on Managing Context
Information in Mobile and Pervasive Environments (2005)

18. Chen, H., Finin, T., Joshi, A.: Using owl in a pervasive computing broker (2003)
19. Hong, M., Cho, D.: Ontology Context Model for Context-Aware Learning Service in

Ubiquitous Learning Environments. International Journal of Computers 2(3), 172–178
(2008)

20. Kay, A.C.: The early history of smalltalk. SIGPLAN Not. 28, 69–95 (1993)
21. Wirfs-Brock, R., Mckean, A.: Object Design: Roles, Responsibilities and Collaborations.

Addison-Wesley, Reading (2002)
22. Gershenson, C.: Contextuality: A Philosophical Paradigm, with Applications to

Philosophy of Cognitive Science, POCS Essay, COGS, University of Sussex (2002)
23. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns. Addison-Wesley

Professional, Reading (1995)

	Rethinking Context Models
	Introduction
	What We Talk about When We Talk about Context
	Approaches for Context Modelling
	Key-Value Models
	Markup-Based Models
	Relational-Based Models
	Ontology-Based Models
	Conclusion

	A Balance between Positivism and Phenomenology
	Discussion and Further Work
	References

