Abstract
Recommender Systems have become a significant area in the context of web personalization, given the large amount of available data. Ontologies can be widely taken advantage of in recommender systems, since they provide a means of classifying and discovering of new information about the items to recommend, about user profiles and even about their context. We have developed a semantically enhanced recommender system based on this kind of ontologies. In this paper we present a description of the proposed system.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Adomavicius, G., Tuzhilin, A.: Toward the Next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions. IEEE Trans. Knowl. Data Eng. 17(6), 734–749 (2005)
Mobasher, B., Jin, X., Zhou, Y.: Semantically Enhanced Collaborative Filtering on the Web. In: Berendt, B., Hotho, A., Mladenič, D., van Someren, M., Spiliopoulou, M., Stumme, G. (eds.) EWMF 2003. LNCS (LNAI), vol. 3209, pp. 57–76. Springer, Heidelberg (2004)
Middleton, S.E., Shadbolt, N., De Roure, D.: Ontological user profiling in recommender systems. ACM Trans. Inf. Syst. 22(1), 54–88 (2004)
Wang, R.-Q., Kong, F.-S.: Semantic-Enhanced Personalized Recommender System. In: International Conference on Machine Learning and Cybernetics, vol. 7, pp. 4069–4074 (2007)
Liu, P., Nie, G., Chen, D.: Exploiting Semantic Descriptions of Products and User Profiles for Recommender Systems. Computational Intelligence and Data Mining, 179–185 (2007)
Ziegler, C., Schmidt-Thieme, L., Lausen, G.: Exploiting semantic product descriptions for recommender systems. In: Proc. 2nd ACMSIGIR SemanticWeb and IR WS (2004)
Moshfeghi, Y., Agarwal, D., Piwowarski, B., Jose, J.M.: Movie Recommender: Semantically Enriched Unified Relevance Model for Rating Prediction in Collaborative Filtering. In: Boughanem, M., et al. (eds.) ECIR 2009. LNCS, vol. 5478, pp. 54–65. Springer, Heidelberg (2009)
Linden, G., Smith, B., York, J.: Industry Report: Amazon.com Recommendations: Item-to-Item Collaborative Filtering. IEEE Distributed Systems Online 4(1) (2003)
Deshpande, M., Karypis, G.: Item-based top-n recommendation algorithms. ACM Trans. Inf. Sys. 22(1), 143–177 (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ruiz-Montiel, M., Aldana-Montes, J.F. (2009). Semantically Enhanced Recommender Systems. In: Meersman, R., Herrero, P., Dillon, T. (eds) On the Move to Meaningful Internet Systems: OTM 2009 Workshops. OTM 2009. Lecture Notes in Computer Science, vol 5872. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05290-3_74
Download citation
DOI: https://doi.org/10.1007/978-3-642-05290-3_74
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-05289-7
Online ISBN: 978-3-642-05290-3
eBook Packages: Computer ScienceComputer Science (R0)