Abstract
This paper studies expressivity and complexity of normal modal logics for reasoning about cooperation and preferences. We identify a class of local and global notions relevant for reasoning about cooperation of agents that have preferences. Many of these notions correspond to game- and social choice-theoretical concepts. We specify the expressive power required to express these notions by determining whether they are invariant under certain relevant operations on different classes of Kripke models and frames. A large class of known extended modal languages is specified and we show how the chosen notions can be expressed in fragments of this class. To determine how demanding reasoning about cooperation is in terms of computational complexity, we use known complexity results for extended modal logics and obtain for each local notion an upper bound on the complexity of modal logics expressing it.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Pauly, M.: A modal logic for coalitional power in games. JLC 12(1), 149–166 (2002)
Broersen, J., Herzig, A., Troquard, N.: Normal Coalition Logic and its conformant extension. In: Samet, D. (ed.) TARK 2007, PUL, pp. 91–101 (2007)
Girard, P.: Modal Logic for Preference Change. PhD thesis, Stanford (2008)
Kurzen, L.: Logics for Cooperation, Actions and Preferences. Master’s thesis, Universiteit van Amsterdam, The Netherlands (2007)
Ågotnes, T., Dunne, P.E., van der Hoek, W., Wooldridge, M.: Logics for coalitional games. In: LORI 2007, Beijing, China (2007) (to appear)
Alur, R., Henzinger, T., Kupferman, O.: Alternating-time temporal logic. In: Proceedings of the 38th IEEE Symposium on Foundations of Computer Science, Florida (October 1997)
Goranko, V.: Coalition games and alternating temporal logics. In: TARK 2001, pp. 259–272. Morgan Kaufmann, San Francisco (2001)
Hansen, H.H., Kupke, C., Pacuit, E.: Bisimulation for neighbourhood structures. In: Mossakowski, T., Montanari, U., Haveraaen, M. (eds.) CALCO 2007. LNCS, vol. 4624, pp. 279–293. Springer, Heidelberg (2007)
de Jongh, D., Liu, F.: Optimality, belief and preference. In: Artemov, S., Parikh, R. (eds.) Proc. of the Workshop on Rationality and Knowledge, ESSLLI (2006)
Osborne, M.J., Rubinstein, A.: A course in game theory. MIT Press, Cambridge (1994)
Cate, B.: Model theory for extended modal languages. PhD thesis, University of Amsterdam, ILLC Dissertation Series DS-2005-01 (2005)
Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge Tracts in Theoretical Computer Science, vol. 53. Cambridge University Press, UK (2001)
van Benthem, J.: Modal Logic and Classical Logic. Bibliopolis, Napoli (1983)
Areces, C., Blackburn, P., Marx, M.: Hybrid logics: characterization, interpolation and complexity. The Journal of Symbolic Logic 66(3), 977–1010 (2001)
Feferman, S.: Persistent and invariant formulas for outer extensions. Compositio Mathematica 20, 29–52 (1969)
Goldblatt, R.I., Thomason, S.K.: Axiomatic classes in propositional modal logic. In: Crossley, J.N. (ed.) Algebra and Logic: Papers 14th Summer Research Inst. of the Australian Math. Soc. LNM, vol. 450, pp. 163–173. Springer, Berlin (1975)
Dégremont, C., Kurzen, L.: Modal logics for preferences and cooperation: Expressivity and complexity. ILLC PP-2008-39, University of Amsterdam (2008), http://staff.science.uva.nl/~cdegremo/
Papadimitriou, C.M.: Computational complexity. Addison-Wesley, MA (1994)
Odifreddi, P.: Classical Recursion Theory. Studies in Logic and the Foundations of Mathematics, vol. (125). North-Holland, Amsterdam (1989)
Harel, D.: Recurring dominoes: making the highly undecidable highly understandable. In: Topics in the theory of computation, New York, NY, USA, pp. 51–71. Elsevier, Amsterdam (1985)
Ladner, R.E.: The computational complexity of provability in systems of modal propositional logic. SIAM J. Comput. 6(3), 467–480 (1977)
Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs. J. Comput. Syst. Sci. (1979)
Halpern, J.Y., Moses, Y.: A guide to completeness and complexity for modal logics of knowledge and belief. Artificial Intelligence 54(3), 319–379 (1992)
ten Cate, B., Franceschet, M.: On the complexity of hybrid logics with binders. In: Ong, L. (ed.) CSL 2005. LNCS, vol. 3634, pp. 339–354. Springer, Heidelberg (2005)
Franceschet, M., de Rijke, M.: Model checking for hybrid logics. In: Proceedings of the Workshop Methods for Modalities (2003)
Gurevich, Y.: The classical decision problem. In: Perspectives in Mathematical Logic. Springer, Heidelberg (1997)
Lutz, C., Sattler, U.: The complexity of reasoning with boolean modal logics. In: Wolter, W., de Rijke, Z. (eds.) AiML, WS, pp. 329–348 (2000)
Lange, M.: Model checking pdl with all extras. J. Applied Logic 4(1), 39–49 (2006)
Franceschet, M., de Rijke, M.: Model checking hybrid logics (with an application to semistructured data). J. Applied Logic 4(3), 279–304 (2006)
Donini, F.M., Lenzerini, M., Nardi, D., Nutt, W.: The complexity of concept languages. In: KR, pp. 151–162 (1991)
Spaan, E.: Complexity of modal logics. PhD thesis, ILLC Amsterdam (1993)
Hemaspaandra, E.: The price of universality. NDJFL 37(2), 174–203 (1996)
Areces, C., Blackburn, P., Marx, M.: A road-map on complexity for hybrid logics. In: Flum, J., Rodríguez-Artalejo, M. (eds.) CSL 1999. LNCS, vol. 1683, pp. 307–321. Springer, Heidelberg (1999)
Vardi, M.Y.: The complexity of relational query languages (extended abstract). In: STOC 1982: Proceedings of the fourteenth annual ACM symposium on Theory of computing, pp. 137–146. ACM, New York (1982)
Ågotnes, T., van der Hoek, W., Wooldridge, M.: Quantified coalition logic. In: Veloso, M.M. (ed.) Proceedings of the Twentieth International Joint Conference on Artificial Intelligence (IJCAI 2007), California, pp. 1181–1186. AAAI Press, Menlo Park (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Dégremont, C., Kurzen, L. (2009). Modal Logics for Preferences and Cooperation: Expressivity and Complexity. In: Meyer, JJ.C., Broersen, J. (eds) Knowledge Representation for Agents and Multi-Agent Systems. KRAMAS 2008. Lecture Notes in Computer Science(), vol 5605. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05301-6_3
Download citation
DOI: https://doi.org/10.1007/978-3-642-05301-6_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-05300-9
Online ISBN: 978-3-642-05301-6
eBook Packages: Computer ScienceComputer Science (R0)