Abstract
Blurred segments [2] were introduced in discrete geometry to address possible noise along discrete contours. The noise is not really detected but is rather canceled out by thickening digital straight segments. The thickness is tuned by a user and set globally for the contour, which requires both supervision and non-adaptive contour processing. To overcome this issue, we propose an original strategy to detect locally both the amount of noise and the meaningful scales of each point of a digital contour. Based on the asymptotic properties of maximal segments, it also detects curved and flat parts of the contour. From a given maximal observation scale, the proposed approach does not require any parameter tuning and is easy to implement. We demonstrate its effectiveness on several datasets. Its potential applications are numerous, ranging from geometric estimators to contour reconstruction.
This work was partially funded by ANR GeoDIB project, n° ANR-06-BLAN-0225. Bertrand Kerautret was partially funded by a BQR project of Nancy-Universités.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Chen, K.: Adaptive smoothing via contextual and local discontinuities. IEEE Trans. Pattern Anal. Mach. Intell. 27(10), 1552–1566 (2005)
Debled-Rennesson, I., Feschet, F., Rouyer-Degli, J.: Optimal blurred segments decomposition of noisy shapes in linear times. Comp. and Graphics 30, 30–36 (2006)
de Vieilleville, F., Lachaud, J.O., Feschet, F.: Maximal digital straight segments and convergence of discrete geometric estimators. J. Math. Imaging Vis. 27(2), 471–502 (2007)
Elder, J.H., Zucker, S.W.: Local scale control for edge detection and blur estimation. IEEE Trans. Pattern Anal. Mach. Intell. 20(7), 669–716 (1998)
Kerautret, B., Lachaud, J.O.: Curvature estimation along noisy digital contours by approximate global optimization. Pattern Recognition 42(10), 2265–2278 (2009)
Koenderink, J.J.: The structure of images. Biol. Cyb. 50, 363–370 (1984)
Lachaud, J.O.: Espaces non-euclidiens et analyse d’image : modèles déformables riemanniens et discrets, topologie et géométrie discrète. Habilitation à diriger des recherches, Université Bordeaux 1, Talence, France (2006) (en français)
Lachaud, J.O., Vialard, A., de Vieilleville, F.: Fast, accurate and convergent tangent estimation on digital contours. Image Vision Comp. 25(10), 1572–1587 (2007)
Malgouyres, R., Brunet, F., Fourey, S.: Binomial convolutions and derivatives estimations from noisy discretizations. In: Coeurjolly, D., Sivignon, I., Tougne, L., Dupont, F. (eds.) DGCI 2008. LNCS, vol. 4992, pp. 370–379. Springer, Heidelberg (2008)
Nguyen, T., Debled-Rennesson, I.: Curvature estimation in noisy curves. In: Kropatsch, W.G., Kampel, M., Hanbury, A. (eds.) CAIP 2007. LNCS, vol. 4673, pp. 474–481. Springer, Heidelberg (2007)
Witkin, A.P.: Scale-space filtering. In: Proc. 8th Int. Joint Conf. Artificial Intelligence, pp. 1019–1022 (1983)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kerautret, B., Lachaud, JO. (2009). Multi-scale Analysis of Discrete Contours for Unsupervised Noise Detection. In: Wiederhold, P., Barneva, R.P. (eds) Combinatorial Image Analysis. IWCIA 2009. Lecture Notes in Computer Science, vol 5852. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10210-3_15
Download citation
DOI: https://doi.org/10.1007/978-3-642-10210-3_15
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-10208-0
Online ISBN: 978-3-642-10210-3
eBook Packages: Computer ScienceComputer Science (R0)