Abstract
We study the weighted generalization of the edge coloring problem where the goal is to minimize the sum of the weights of the heaviest edges in the color classes. In particular, we deal with the approximability of this problem on bipartite graphs and trees. We first improve the best known approximation ratios for bipartite graphs of maximum degree \({\it \Delta} \geq 7\). For trees we present a polynomial 3/2-approximation algorithm, which is the first one for any special graph class with an approximation ratio less than the known ratio of two for general graphs. Also for trees, we propose a moderately exponential approximation algorithm that improves the 3/2 ratio with running time much better than that needed for the computation of an optimal solution.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Björklund, A., Husfeldt, T.: Inclusion–exclusion algorithms for counting set partitions. In: 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2006), pp. 575–582. IEEE Computer Society, Los Alamitos (2006)
Cole, R., Ost, K., Schirra, S.: Edge-coloring bipartite multigraphs in O(E logD) time. Combinatorica 21, 5–12 (2001)
de Werra, D., Demange, M., Escoffier, B., Monnot, J., Paschos, V.T.: Weighted coloring on planar, bipartite and split graphs: Complexity and approximation. Discrete Applied Mathematics 157, 819–832 (2009)
de Werra, D., Hoffman, A.J., Mahadev, N.V.R., Peled, U.N.: Restrictions and preassignments in preemptive open shop scheduling. Discrete Applied Mathematics 68, 169–188 (1996)
Demange, M., de Werra, D., Monnot, J., Paschos, V.T.: Time slot scheduling of compatible jobs. Journal of Scheduling 10, 111–127 (2007)
Epstein, L., Levin, A.: On the max coloring problem. In: Kaklamanis, C., Skutella, M. (eds.) WAOA 2007. LNCS, vol. 4927, pp. 142–155. Springer, Heidelberg (2008)
Escoffier, B., Monnot, J., Paschos, V.T.: Weighted coloring: further complexity and approximability results. Information Processing Letters 97, 98–103 (2006)
Holyer, I.: The NP-completeness of edge-coloring. SIAM Journal on Computing 10, 718–720 (1981)
Kesselman, A., Kogan, K.: Nonpreemptive scheduling of optical switches. IEEE Transactions on Communications 55, 1212–1219 (2007)
König, D.: Über graphen und ihre anwendung auf determinantentheorie und mengenlehre. Mathematische Annalen 77, 453–465 (1916)
Kubale, M.: Some results concerning the complexity of restricted colorings of graphs. Discrete Applied Mathematics 36, 35–46 (1992)
Lucarelli, G., Milis, I., Paschos, V.T.: On the maximum edge coloring problem. In: Bampis, E., Skutella, M. (eds.) WAOA 2008. LNCS, vol. 5426, pp. 279–292. Springer, Heidelberg (2009)
Lucarelli, G., Milis, I., Paschos, V.T.: On the max-weight edge coloring problem. Journal of Combinatorial Optimization (in press)
Micali, S., Vazirani, V.V.: An \({O(\sqrt{|V|}|E|)}\) algorithm for finding maximum matching in general graphs. In: 21st Annual IEEE Symposium on Foundations of Computer Science (FOCS 1980), pp. 17–27. IEEE Computer Society, Los Alamitos (1980)
Pemmaraju, S.V., Raman, R.: Approximation algorithms for the max-coloring problem. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1064–1075. Springer, Heidelberg (2005)
Pemmaraju, S.V., Raman, R., Varadarajan, K.R.: Buffer minimization using max-coloring. In: 15th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2004), pp. 562–571 (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bourgeois, N., Lucarelli, G., Milis, I., Paschos, V.T. (2009). Approximating the Max Edge-Coloring Problem. In: Fiala, J., Kratochvíl, J., Miller, M. (eds) Combinatorial Algorithms. IWOCA 2009. Lecture Notes in Computer Science, vol 5874. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10217-2_11
Download citation
DOI: https://doi.org/10.1007/978-3-642-10217-2_11
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-10216-5
Online ISBN: 978-3-642-10217-2
eBook Packages: Computer ScienceComputer Science (R0)