Abstract
A minimax tree is similar to a Huffman tree except that, instead of minimizing the weighted average of the leaves’ depths, it minimizes the maximum of any leaf’s weight plus its depth. Golumbic (1976) introduced minimax trees and gave a Huffman-like, \(\mathcal{O}{n \log n}\)-time algorithm for building them. Drmota and Szpankowski (2002) gave another \(\mathcal{O}{n \log n}\)-time algorithm, which takes linear time when the weights are already sorted by their fractional parts. In this paper we give the first linear-time algorithm for building minimax trees for unsorted real weights.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ahlswede, R., Wegener, I.: Search Problems. Wiley, Chichester (1987)
Aigner, M.: Combinatorial Search. Wiley, Chichester (1988)
Baer, M.B.: Tight bounds on minimum maximum pointwise redundancy. In: Proceedings of the International Symposium on Information Theory, pp. 1944–1948 (2008)
Blum, M., Floyd, R.W., Pratt, V.R., Rivest, R.L., Tarjan, R.E.: Time bounds for selection. Journal of Computer and System Sciences 7(4), 448–461 (1973)
Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cambridge University Press, Cambridge (1998)
Coppersmith, D., Klawe, M.M., Pippenger, N.: Alphabetic minimax trees of degree at most t. SIAM Journal on Computing 15(1), 189–192 (1986)
Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. MIT Press and McGraw-Hill (2001)
Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd edn. Wiley, Chichester (2006)
De Prisco, R., Persiano, G.: Characteristic inequalities for binary trees. Information Processing Letters 53(4), 201–207 (1995)
Drmota, M., Szpankowski, W.: Generalized Shannon code minimizes the maximal redundancy. In: Proceedings of the 5th Latin American Symposium on Theoretical Informatics, pp. 306–318 (2002)
Drmota, M., Szpankowski, W.: Precise minimax redundancy and regret. IEEE Transactions on Information Theory 50(11), 2686–2707 (2004)
Evans, W.S., Kirkpatrick, D.G.: Restructuring ordered binary trees. Journal of Algorithms 50(2), 168–193 (2004)
Faller, N.: An adaptive system for data compression. In: Record of the 7th Asilomar Conference on Circuits, Systems and Computers, pp. 593–597 (1973)
Franceschini, G., Muthukrishnan, S., Pǎtraşcu, M.: Radix sorting with no extra space. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS, vol. 4698, pp. 194–205. Springer, Heidelberg (2007)
Gagie, T.: A new algorithm for building alphabetic minimax trees. Fundamenta Informaticae (to appear)
Gagie, T.: Dynamic Shannon coding. In: Albers, S., Radzik, T. (eds.) ESA 2004. LNCS, vol. 3221, pp. 359–370. Springer, Heidelberg (2004)
Gagie, T.: Dynamic Shannon coding. Information Processing Letters 102(2-3), 113–117 (2007)
Gallager, R.G.: Variations on a theme by Huffman. IEEE Transactions on Information Theory 24(6), 668–674 (1978)
Golin, M.J., Kenyon, C., Young, N.E.: Huffman coding with unequal letter costs. In: Proceedings of the 34th Symposium on Theory of Computing, pp. 785–791 (2002)
Golin, M.J., Li, J.: More efficient algorithms and analyses for unequal letter cost prefix-free coding. IEEE Transactions on Information Theory 52(8), 3412–3424 (2008)
Golumbic, M.C.: Combinatorial merging. IEEE Transactions on Computers 25(11), 1164–1167 (1976)
Hoover, H.J., Klawe, M.M., Pippenger, N.: Bounding fan-out in logical networks. Journal of the ACM 31(1), 13–18 (1984)
Hu, T.C., Kleitman, D.J., Tamaki, J.: Binary trees optimum under various criteria. SIAM Journal on Applied Mathematics 37(2), 246–256 (1979)
Huffman, D.A.: A method for the construction of minimum-redundancy codes. Proceedings of the IRE 40, 1089–1101 (1952)
Karpinski, M., Nekrich, Y.: A fast algorithm for adaptive prefix coding. Algorithmica 55(1), 29–41 (2009)
Katona, G.O.H., Nemetz, T.O.H.: Huffman codes and self-information. IEEE Transactions on Information Theory 22(3), 337–340 (1976)
Kirkpatrick, D.G., Klawe, M.M.: Alphabetic minimax trees. SIAM Journal on Computing 14(3), 514–526 (1985)
Kirkpatrick, D.G., Przytycka, T.M.: An optimal parallel minimax tree algorithm. In: Proceedings of the 2nd Symposium on Parallel and Distributed Processing, pp. 293–300 (1990)
Klawe, M.M., Mumey, B.: Upper and lower bounds on constructing alphabetic binary trees. SIAM Journal on Discrete Mathematics 8(4), 638–651 (1995)
Knuth, D.E.: Dynamic Huffman coding. Journal of Algorithms 6(2), 163–180 (1985)
Kraft, L.G.: A device for quantizing, grouping, and coding amplitude-modulated pulses. MSc thesis, Massachusetts Institute of Technology (1949)
Krause, R.M.: Channels which transmit letters of unequal duration. Information and Control 5(1), 13–24 (1962)
Nakatsu, N.: Bounds on the redundancy of binary alphabetical codes. IEEE Transactions on Information Theory 37(4), 1225–1229 (1991)
Parker Jr., D.S.: Combinatorial merging and Huffman’s algorithm. IEEE Transactions on Computers 28(5), 365–367 (1979)
Rezaei, F., Charalambous, C.D.: Robust coding for uncertain sources: a minimax approach. In: Proceedings of the International Symposium on Information Theory, pp. 1539–1543 (2005)
Shannon, C.E.: A mathematical theory of communication. Bell System Technical Journal 27, 379–423, 623–645 (1948)
van Leeuwen, J.: On the construction of Huffman trees. In: Proceedings of the 3rd International Colloquium on Automata, Languages and Programming, pp. 382–410 (1976)
Yeung, R.W.: Alphabetic codes revisited. IEEE Transactions on Information Theory 37(3), 564–572 (1991)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gawrychowski, P., Gagie, T. (2009). Minimax Trees in Linear Time with Applications. In: Fiala, J., Kratochvíl, J., Miller, M. (eds) Combinatorial Algorithms. IWOCA 2009. Lecture Notes in Computer Science, vol 5874. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10217-2_28
Download citation
DOI: https://doi.org/10.1007/978-3-642-10217-2_28
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-10216-5
Online ISBN: 978-3-642-10217-2
eBook Packages: Computer ScienceComputer Science (R0)