Abstract
Geodesic invariant feature (GIH) have been originally proposed to build a new local feature descriptor invariant not only to affine transformations, but also to general deformations. The aim of this paper is to investigate the possible improvements given by the use of color information in this kind of descriptors. We introduced color information both in geodesic feature construction and description. At feature construction level, we extended the fast marching algorithm to use color information; at description level, we tested several color spaces on real data and we devised the opponent color space as an useful integration to intensity information. The experiments used to validate our theory are based on publicly available data and show the improvement, both in precision and recall, with respect to the original intensity based geodesic features. We also compared this kind of features, on affine and non affine transformation, with SIFT, steerable filters, moments invariants, spin images and GIH.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Freeman, W., Adelson, E.: The Design and Use of Steerable Filters. IEEE Trans. on PAMI 13(9), 891–906 (1991)
Gool, L.V., Moons, T., Ungureanu, D.: Solutions périodiques, du Affine Photometric Invariants for Planar Intensity Patterns. In: ECCV , pp. 642–651 (1996)
Lazebnik, S., Schmid, C., Ponce, J.: A Sparse Texture representation using affine-invariant regions. In: CVPR, vol. 2, pp. 319–324 (2003)
Ling, H., Jacobs, D.W.: Deformation Invariant Image Matching. In: ICCV, vol. 1, pp. 1466–1473 (2005)
Lowe, D.: Distinctive image features from scale invariant keypoints. IJCV 60(2), pp. 91–110 (2004)
Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide baseline stereo from maximally stable extremal regions. In: BMVC, pp. 384–393 (2002)
Mikolajczyk, K., Schmid, C.: A Performance Evaluation of Local Descriptors. In: PAMI, vol. 27, pp. 1615–1630 (2005)
Mikolajczyk, K., Schmid, C.: Scale and Affine invariant interest point detectors. IJCV 60(1), pp. 63–86 (2004)
Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., Gool, L.V.: A comparison of affine region detectors. IJCV, 65(1/2), pp. 43–72 (2005)
Moreels, P., Perona, P.: Evaluation of Features Detectors and Descriptors based on 3D objects. In: ICCV, vol. 1, pp. 800–807 (2005)
Sethian, J.: Efficient Schemes: Fast Marching Methods, pp. 87–100. Cambridge University Press, Cambridge (1999)
Van de Weijer, J., Schmid, C.: Coloring Local Feature Extraction. In: ECCV, vol. 2, pp. 334–348 (2006)
Anzani, F., Bosisio, B., Matteucci, M., Sorrenti, D.G.: Sorrenti: On-Line Color Calibration in Non-stationary Environments. In: RoboCup 2005: Robot Soccer World Cup IX, pp. 396–407 (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Migliore, D., Matteucci, M., Campari, P.P. (2009). Improving Geodesic Invariant Descriptors through Color Information. In: Ranchordas, A., Araújo, H.J., Pereira, J.M., Braz, J. (eds) Computer Vision and Computer Graphics. Theory and Applications. VISIGRAPP 2008. Communications in Computer and Information Science, vol 24. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10226-4_12
Download citation
DOI: https://doi.org/10.1007/978-3-642-10226-4_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-10225-7
Online ISBN: 978-3-642-10226-4
eBook Packages: Computer ScienceComputer Science (R0)