Skip to main content

Finding Stops in Error-Prone Trajectories of Moving Objects with Time-Based Clustering

  • Conference paper
Intelligent Interactive Assistance and Mobile Multimedia Computing (IMC 2009)

Abstract

An important problem in the study of moving objects is the identification of stops. This problem becomes more difficult due to error-prone recording devices. We propose a method that discovers stops in a trajectory that contains artifacts, namely movements that did not actually take place but correspond to recording errors. Our method is an interactive density-based clustering algorithm, for which we define density on the basis of both the spatial and the temporal properties of a trajectory. The interactive setting allows the user to tune the algorithm and to study the stability of the anticipated stops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alvares, L.O., Bogorny, V., Kuijpers, B., de Macêdo, J.A.F., Moelans, B., Vaisman, A.A.: A model for enriching trajectories with semantic geographical information. In: GIS, Seite 22 (2007)

    Google Scholar 

  2. Ankerst, M., Breunig, M.M., Kriegel, H.P., Sander, J.: Optics: Ordering points to identify the clustering structure, pp. 49–60. ACM Press, New York (1999)

    Google Scholar 

  3. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the 2nd Conference on Knowledge Discovery and Data Mining, pp. 226–231. AAAI Press, Menlo Park (1996)

    Google Scholar 

  4. Han, J.: Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers Inc., San Francisco (2005)

    Google Scholar 

  5. Kalkusch, M., Lidy, T., Knapp, M., Reitmayr, G., Kaufmann, H., Schmalstieg, D.: Structured visual markers for indoor pathfinding (2002)

    Google Scholar 

  6. Kolmogorov, A.N.: Grundbegriffe der Wahrscheinlichkeitsrechnung. Springer, Berlin (1933)

    Google Scholar 

  7. Liao, L., Fox, D., Kautz, H.: Extracting places and activities from gps traces using hierarchical conditional random fields. Int. J. Rob. Res. 26(1), 119–134 (2007)

    Article  Google Scholar 

  8. Nanni, M., Pedreschi, D.: Time-focused clustering of trajectories of moving objects. J. Intell. Inf. Syst. 27(3), 267–289 (2006)

    Article  Google Scholar 

  9. Palma, A.T., Bogorny, V., Kuijpers, B., Alvares, L.O.: A clustering-based approach for discovering interesting places in trajectories. In: SAC 2008: Proceedings of the 2008 ACM symposium on Applied computing, pp. 863–868. ACM, New York (2008)

    Chapter  Google Scholar 

  10. Spaccapietra, S., Parent, C., Damiani, M.L., de Macedo, J.A., Porto, F., Vangenot, C.: A conceptual view on trajectories. Data Knowl. Eng. 65(1), 126–146 (2008)

    Article  Google Scholar 

  11. Zheng, Y., Li, Q., Chen, Y., Xie, X., Ma, W.-Y.: Understanding mobility based on gps data. In: UbiComp 2008: Proceedings of the 10th Int. Conf. on Ubiquitous computing, pp. 312–321. ACM, New York (2008)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zimmermann, M., Kirste, T., Spiliopoulou, M. (2009). Finding Stops in Error-Prone Trajectories of Moving Objects with Time-Based Clustering. In: Tavangarian, D., Kirste, T., Timmermann, D., Lucke, U., Versick, D. (eds) Intelligent Interactive Assistance and Mobile Multimedia Computing. IMC 2009. Communications in Computer and Information Science, vol 53. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10263-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10263-9_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10262-2

  • Online ISBN: 978-3-642-10263-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics